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Abstract 

 
The human activity of walk and run leads to the join femur-hip a cyclic load and a fluctuant stress and strain that is 
able to produce cracks or fracture due to fatigue that is a progressive and permanent change in material endurance. 
Brazilian standards define the position, intensity and number of cycles of the load to simulate the real life of a new 
protheses designed. The aim of this study is to predict the failure progression of ASTM F75 alloy femoral prostheses 
under fatigue analysis whit finite element method for simulation. The alloy F75 shows satisfactory results in static 
analysis, but in the dynamic analysis nether exceeds 5 million cycles and it presents fail in the safety factor to fatigue. 
 
Keywords: Femoral hip protheses, simulation, fatigue, finite element method. 
 
1. Introduction 
 
The use of simulations in the factories is becoming increasingly necessary due to the search for productivity and 
competitiveness, allowing the testing and improvement of processes and products still in the design phase, reducing 
costs and design and production time. CAE systems (for computer-aided engineering) are computer systems associated 
with product design and simulations by finite element modeling. Design systems and software include geometric 
modeling, engineering analysis packages such as finite element modeling, design review and evaluation, and 
automated drafting (Groover, 2013). This work is focused on the area of modeling and simulation, a greater emphasis 
is given to femoral prostheses fatigue simulation, as it involves important technological concepts of product 
development. 

Metallic biomaterials are used for load bearing applications and must have sufficient fatigue strength to endure the 
rigors of daily activity. The main property required of a metal as biomaterial is that it does not illicit an adverse reaction 
when placed into services, that means to be a biocompatible material. As well, good mechanical properties, 
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osseointegration, high corrosion resistance and excellent wear resistance are required. That is, the material used as 
implants are expected to be highly non toxic and should not cause any inflammatory or allergic reactions in the human 
body (Santos, 2017; Dos Santos et al., 2020).  

ASTM F75 is an alloy used for biomedical applications, specifically in total hip joint replacement. The main functions 
of the hip include supporting of the body weight and the movement for locomotion, its articulation is formed by a joint 
between the head of the femur, acetabulum and articular cartilage (Queiroz, 2014). The hip is a complex structure, 
composed of bones, ligaments, and structural muscles, responsible for transmitting stability to the body.  This joint is 
crucial for physical activities and is often exposed to efforts such as torsion, flexion and compression (Kehr, 2017). 

Fracture of the femur is an important research topic in orthopedic and mechanical engineering. Normal and healthy 
femur lesions are usually caused by high demands, as well as car and sports accidents (Ebrahimi, 2012). Bone tissue 
is a complex natural composite consisting of soft and strong protein collagen, which has a density between 1.6 and 
1.7 g/cm3. Bone is an anisotropic material with mechanical properties that differ in longitudinal and transverse 
directions (Callister, 2012). 
 
Orthopedic prostheses in Brazil are mainly produced in stainless steel due to two factors: low cost, compared to cobalt 
or titanium based metals and their alloys, and demonstrate excellent mechanical and chemical resistance (De Oliveira, 
2012). Metal implants that replace fractured bones, such as artificial joints, bone plates, and total hip prostheses, are 
conventionally used under severe cyclic loading conditions (Yang and Ren, 2010). Approximate 10% of the world 
population have allergy to metallic alloys with nickel, some chemistry elements present in stainless steels, leading to 
toxic reactions in the host body, which are only diagnosed after a sufficiently long post-implantation period (Chen and 
Thouas, 2015).  
 
The ASTM F75 alloy is typically characterized by two crystalline phases: face-centered cubic (FCC) and hexagonal 
closed-compact (HCC). The cubic structure, coupled with its low stacking failure energy, is considered responsible 
for high resistance values, which can be increased by the addition of hardening agents such as chromium, tungsten 
and molybdenum (Baldissera, 2007). 

The production processes involved in implants manufacturing also affect their corrosion resistance, specifically those 
that influence the surface finishing. Studies related to manufacturing technology show the influence of processes on 
the performance of products (Miranda et al., 2016; Miranda et al., 2017; Nascimento et al., 2017; Nascimento et al., 
2018; Nascimento et al., 2019; Santos et al., 2017, Da Cruz et al., 2020; Dos Santos et al., 2020). Laser engraving is 
usually one of the commonly applied processes and also results in corrosion implications (Pieretti et al., 2014). An 
important parameter for the development of total hip prostheses is the surface finish of the cup/acetabulum, because 
the lower the roughness of these surfaces, the longer the prosthesis will last (Revell, 2014).  

The Finite Element Method (FEM) is a numerical method that approximates the original problem solving of ordinary 
or partial differential equations by means of polynomial interpolation throughout the discrete system by means of a 
set of individual solutions of each element (Queiroz, 2014). FEM simulations allow apply realistic loads and complex 
geometries, that is possible to know the displacement, stress and strain fields, that simplify and improve the design 
process (Stolk, 2002). The finite element analysis allows both quantitative and qualitative simulation of complex 
mechanical assays, helping to prevent potential failures (Borie 2013). 
 
The degradation of metallic implants inside the human body can, in addition to damaging the integrity of the material, 
generate problems such as infections or allergic reactions, leading to the premature withdrawal of this implant (Larosa, 
2010). Chromium is mainly responsible for the corrosion resistance due to the formation of an oxide film firmly 
adhered to the alloy surface (passivation layer) (Huang, 2003). The failure that occurs by the simultaneous action of a 
cyclic stress and chemical attack is termed corrosion fatigue. Corrosive environments have a deleterious influence and 
produce smaller lives in fatigue (Callister, 2012). 
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2.Material and Methods 
 
The complete cycle of the march is divided in two main phases, being a support and another of transition that include 
activities that begins when there is the initial contact from one end with the ground and another one when the same 
end again has contact with the ground (Norkin, 1992). 
 
Figure 1 shows the quantification of soil reaction forces parameters for a 75 kg individual as the main overload 
indicator for the hip joint, considering different displacement velocities during the support phase with the soil in the 
floor. 
 

 
Figure 1. Function curve Force X time for walk, slow running (3.5 m/s) e fast running (6 m/s). (Amadio et al., 

2007). 

According to the requests loads by Amadio et al. (2007) and of what is predicted in the standard ABNT 7206 (2008) 
the force adopted in this study will be of 2.3 kN. The position of the force is also demonstrated in the standard, 10 
degrees with respect to the angle of the frontal plane and 9 degrees angle of the lateral plane. Paul (1976) carried out 
a study addressing the position of the requests in the hip shown in the Figure 2. 

 

Forçe (kN)

Walk Slow running Fast running

time
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Figure 2. Relative direction of forces at the hip joint. (Paul, 1976) 

 
For FEM analysis was utilized Adina, Autodesk® Inventor® (2013) and Autodesk® Simulation (2015). The virtual 
model of the prosthesis was developed through the technical design provided by the company Ortosíntese.  The 
geometry of the stem shown in the Figure 3 was designed to provide a better distribution of stresses by minimizing 
the points of greatest stress concentration and also its surface generates an excellent attachment to PMMA 
(polymethylmethacrylate), which in turn will be in contact with the bone. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. a) Isometric view of the femoral stem model. b)  Detail of the different transverse sections in the 
prosthesis. 

a) b) 
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The implanted stems work under the action of complex mechanical stresses in saline, which requires the material to 
be resistant to corrosion. Due to this fact, it is necessary to properly select the biocompatible metal (Cé, 2010). Table 
1 shows the chemical composition of the ASTM F75 alloy. 

 
Table 1. Chemical Composition of the ASTM F75 alloy 

Element C Si Cr Mo W Ni 
Weight% 0,35 1,00 30,00 7,00 0,20 0,10 

(Giacchi,  2011) 
 
Among the inputs required to perform the virtual simulation are the mechanical properties of the material studied, 
Table 2 shows the input values. 
 

Table 2. Mechanical Properties of Material. 
Material Young’s Modulus 

(GPa) 
Density 
(g/cm3) 

Yield Strength 
(MPa) 

Ultimate Tensile Strength 
(MPa) 

Bone 
ASTM F75 

15,2 – 40,8 
210 

1.6 – 1.7 
8,8 

114 
448 

250 
655 

(Ratner, 2004) 
 
In order to simulate the condition closest to the real one, a universal device show in Figure 4 a) and b) was developed 
to encompass the base of the studied stem. At the lower end of the device the restriction of a fixed support was applied 
thus effecting the limitation of the movement of the required component.  
 
 
 

 
 

Figure 4.  a) FEM mesh and b) Protheses locus in the support. 
 
 
In Adina, the properties of the material were assumed as plastic bilinear and 0.3 for Poisson ratio in Figure 5 for 
ASTM F75. 

 

(a) (b)
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Figure 5. Protheses locus in the support. 

 
In the stress analysis environment, the type of interaction between the stem and the base is defined, the objective is to 
investigate the stress in the stem and according to this input the selected interaction will be of perfect union. The cyclic 
load of intensity 2.3 kN was applied to the flat surface of the beaker in accordance with Figure 6. On the lower surface 
of the base, a restriction of the nozzle is applied, restricting its translation and rotation movements in the x, y and z 
axes. The element in Autodesk ®Inventor®2013 is tetrahedral with ten nodes and 8 nodes 3DSolid in Adina. Von 
Mises (Equivalent Stress) criteria were used to calculate normal stress, which is a classic approach in the field of 
mechanical engineering. The criterion of approval of the model is established by comparing the stress of Von Mises, 
generated in the simulation, with the yield stress of the material (Zameer, 2015).  
 

 
Figure 6. Load time history. 

 
 
 
3.Results 
 
With the aid of the map of stress and deflections the displacement and maximum stress can be observed as a function 
of the incidence of the vertical force of compression.  
 
Regarding the deflection shown in the Figure 7 there was no significant displacement, since the Brazilian standard 
predicts maximum displacement of up to 5 mm. The region of the neck (place of greater discontinuity) and also the 
point closer to the base, were the points that presented greater concentration of stress. The request of 2.3 kN generated 
a coefficient of 0.82 shown in the Figure 8, which reveals an index that does not meet the expectations of the project. 
According to the static loads by which the virtual model was submitted it can be concluded that the design is not safe 
using the ASTM F75 alloy. 
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Figure 7. ASTM F75 – Displacement (cm) Figure 8. ASTM F75 - Safety Factor to fatigue 

 
The model submitted to the dynamic test shown in the Figure 9 demonstrates a behavior analogous to the static test, 
so that regions that would fail prematurely would probably be in the neck and the region of the stem which shows the 
indication "MIN". With the application of ASTM F75 alloy, the virtual model would not meet the Brazilian standard 
criterion of 5 million cycles only with the request of 2.3 kN. It is important to emphasize that the software used in this 
study does not predict the influence of corrosion on its results. Table 3 shows the results in a simplified way. 

 
Figure 9. ASTM F75 - Number of cycles 

 
 

Table 3. Results for load of 2.3 kN. 
Load = 2.3 kN ASTM F75 

Displacement (mm) 0.105 
Safety Factor 0.82 
Number of predictive cycles 7.02. 105 
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4.Conclusions 
 
Based on the results of the simulations, we can conclude that the finite element method (FEM) is a tool that allows 
complex calculations to be performed in a simplified way. In the context of the material tested, the design is not safe 
using the ASTM F75 alloy. 
 
In the application of 2.3 kN (rapid race request) in ASTM F75 alloy, the regions of the neck and the area closest to 
the cradle presented stress that exceeded the yield strength, showing that the developed stem would not meet the 
resistance criteria pre-established in the Brazilian standards. 
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