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Abstract 
 
This paper investigates the use of elitism in chemical reaction optimization (CRO) to address its convergence 
performance in difficult problems. We focus on problems with complex and highly discontinuous solution space. In 
such problems CRO’s convergence performance tend to be sluggish as the algorithm repeatedly digress from the best-
found solution characteristics in search for solutions in different areas in the problem’s solution space. A complex 
road network design problem is used to demonstrate this issue and experiment with the impact of elitism on algorithm 
convergence. Elitism has been used successfully in evolutionary algorithms. Results show that its use in CRO 
improves algorithm convergence performance drastically. However, due to CRO’s tendency to have diminishing 
population of molecules in such problems, the use of a larger list of elite solutions appears to be ineffective in 
improving the algorithm performance beyond the initial gains from introducing elitism. We investigate the reasons 
behind this observation and point to possible solutions. 
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 1. Introduction 
Chemical Reaction Optimization (CRO) is a relatively new addition to the metaheuristics optimization literature. It 
was proposed by Lam and Li (2010). While many metaheuristics take inspiration from the behavior of biological 
systems or organisms (e.g. Genetic Algorithm, Swarm Optimization, Ant Colney Optimization), CRO, on the other 
hand, is inspired by chemical reactions in the physical world. Chemical reactions allow molecules to attain their 
optimal stable energy level. The algorithm mimics reactant molecules taking part in reactions to produce lower energy 
molecules, known as products. In the algorithm, candidate solutions are represented by molecules and neighborhood 
search operators by reactions. 
 
This paper investigates the CRO algorithm performance in difficult optimization problems. It focuses on discrete 
optimization problems where small changes in the solution characteristics typically result in drastic changes in the 
objective function. Such problems are referred to here as high-discontinuity optimization problems. They present a 
unique optimization challenge as metaheuristics often struggle to achieve convergence on such problems. This is due 
to the complex and highly discontinuous problem solution space. Metaheuristics employ neighborhood search 
operators (e.g., mutation and crossover in Genetic Algorithms) to search the problem’s solution space. However, in 
such difficult solution space terrain, neighborhood search operators tend to digress from best solutions found in 
previous iterations or stall in sub-optimal areas. 
 
One solution that has been suggested in the literature to help algorithm convergence is the use of Elitism. It is the 
concept of maintaining a list of elite solutions and using members of this list in the search procedure in hope of utilizing 
their characteristics in finding better solutions. This approach has been applied to various metaheuristics in the 
optimization literature (Guo et al. 2014; Laumanns, Zitzler, and Thiele 2000; Shengxiang Yang 2008). This paper 
investigates the use of elitism in CRO to achieve better optimization convergence performance on the highly 
discontinuous network design problem (NDP). Examples of CRO applications in NDP literature can be found in 
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(Szeto, Wang, and Wong 2014; Wang and Szeto 2017), and an example implementation of elitism in CRO for a 
computer vision application can be found in (Duan and Gan 2015). 
 
CRO applications in the literature are growing both in number and variety. This is due to its success in adapting to 
and handling a range of different optimization problems. In discrete optimization, CRO applications cover a wide 
variety of application areas such as 0-1 knapsack optimization (Truong, Li, and Xu 2013), Quadratic assignment 
problem (Xu, Lam, and Li 2010), flow-shop scheduling (Bargaoui, Belkahla Driss, and Ghédira 2017), Network 
coding (Bo Pan, Lam, and Li 2011), and wireless sensor networks clustering and routing (Srinivasa Rao and Banka 
2017), to mention a few. CRO was also extended to handle multi-objective optimization problems (Bechikh, Chaabani, 
and Ben Said 2015; Wang and Szeto 2017). While it was originally proposed for solving discrete optimization 
problems, its applications now include continuous optimization problems as well (Lam, Li, and Yu 2012; Yu, Lam, 
and Li 2015). Both Islam et al. (2019) and Nayak et al. (2019) provide a review of CRO applications and list its 
different variants. For a comprehensive tutorial on CRO, readers are referred to (Lam and Li 2012). 
 
The rest of the paper is organized as follows. Section 2 provides a brief overview of CRO. Section 3 summarizes the 
NDP used to demonstrate the optimization performance of elitist CRO (ECRO) in a highly discontinuous problem. 
Section 4 describes the algorithm modifications needed to introduce elitism in CRO. Section 5 presents the numerical 
experiments and discuss the paper findings. Finally, we conclude and point to future work in Section 6. 
 
2. Overview of CRO 
This paper builds on the conical CRO algorithm proposed by (Lam and Li 2010). CRO includes four reaction types, 
these reactions function as search operators for the metaheuristic. The reactions include unimolecular and inter-
molecular reactions memicing collisions in chemical reactions. The reactions achieve results analogous to those of 
crossover and mutation in Genetic Algorithms. The four reactions types are: on-wall ineffective collision, inter-
molecular ineffective collision, decomposition, and synthesis. The following describes our implementation of the four 
reaction types for solving the NDP. 
 
Both decomposition and on-wall ineffective collision are unimolecular reactions. A decomposition reaction 
decomposes a single molecule into two by splitting its solution encoding into two to create two product molecules. 
The remaining encoding bits are set with random values from the domain of possible bit values. Decomposition is 
considered a diversification agent in CRO as it helps discover new areas of the solution space. 
 
An on-wall ineffective collision subtly modifies the solution by randomly selecting a single bit from its solution 
encoding and replacing its value with a randomly selected value from the domain of possible bit values. On-wall 
ineffective collision is the weakest of the four reactions and is used to search the immediate neighborhood of solution 
candidates. It can be compared to the mutation operator in Genetic Algorithms. 
 
Synthesis and inter-molecular ineffective collision are both inter-molecular reactions. A synthesis reaction combines 
two reactant molecules into one. It does so by combining two portions from the reactant molecules’ bits into a new 
product molecule. The point of splitting in the bits sequence is randomly selected. Synthesis is considered a 
concentration agent in CRO as it helps concentrate solution characteristics. 
 
Finally, an inter-molecular ineffective collision works by swapping bits between molecules. A bit position is selected 
at random and bits after the position are swapped between the two molecules. Inter-molecular ineffective collision can 
be compared to the crossover operator in Genetic Algorithms. 
 
Figure 1 illustrates the four reactions and how they operate on solution encodings. The solution encoding design is 
described in the following section. At this point it suffices to say that each bit describes a unique solution characteristic 
and its domain of values is the set {0, 1, 2}. 
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Figure 1. Illustration of CRO’s four reactions. In the reactions, m, m1, and m2  
are reactant molecules, and n, n1, and n2 are product molecules. 

 
Conservation of energy is a core feature in CRO. Energy cannot be created nor destroyed in a chemical reaction, rather 
it is converted between molecules’ potential and kinetic energies (PE and KE). In CRO, the solution’s PE represents 
its objective function value while KE is used to allow it to escape local optima. Each reaction is governed by energy 
laws, and only when its input energy is greater than its output energy (i.e. 𝐸!"#$%&'( ≥ 0) the reaction is allowed to 
take place. This mechanism allows the heuristic to search for solutions with lower PE while still being able to explore 
the problem’s solution space through the creation of occasionally higher PE solutions.  
 
CRO also includes a central energy buffer, where excess energy from exothermic reactions is stored, and later used to 
enable endothermic reactions that may not otherwise be possible due to their high energy requirement. In CRO 
decomposition reactions are endothermic and on-wall ineffective collision reactions are exothermic. The remaining 
two reaction types are selfsufficient energy-wise. Equation 1 governs all reactions, with the exception of 
decomposition, which is allowed to use a limited amount of energy from the buffer, as shown in Equation 2. In 
Equation 2, 𝛿) and 𝛿* are polled from uniform random distribution with the range [0,1). 
 

𝐸!"#$%&'( = ∑𝑃𝐸!"#$%#(%+ + ∑𝐾𝐸!"#$%#(%+ −	∑𝑃𝐸,-'./$%+   (1) 
 

𝐸!"#$%&'( = ∑𝑃𝐸!"#$%#(%+ + ∑𝐾𝐸!"#$%#(%+ −	∑𝑃𝐸,-'./$%+ + (𝛿)𝛿*)	𝐵𝑢𝑓𝑓𝑒𝑟  (2) 
 
Algorithm 1 describes the main loop used in CRO and Table 1 (Section 5.1) lists the algorithm’s parameters. For a 
more in-depth description of the algorithm logic and parameters the reader is referred to (Lam and Li 2012). 
 

Algorithm 1: CRO main loop 
 

Input: Parameters, InitialMolecules 
  1. Calculate PE for InitialMolecules 
  2. Set KE ← InitialKE for InitialMolecules 
  3. Set Buffer ← InitialBuffer  
  4. Set nEvaluations ← 0 
  5. Do while nEvaluations < MaxEvaluations 
  6.     if random(0,1) > MolColl or PopulationSize = 1 
  7.          Select a solution randomly 
  8.          if nHits > Alpha 
  9.                Perform Decomposition 
10.          else: 
11.               Perform OnWallIneffectiveCollision 
12.     else: 
13.          Select two solutions randomly 
14.          if both molecules’ KE < Beta 
15.               Perform Synthesis 
16.          else: 
17.               Perform IntermolecularIneffectiveCollision 
18.     nEvaluations ← nEvaluations + 1 
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3. A High-Discontinuity Optimization Problem 
This section provides a summary of the NDP utilized to demonstrate the challenge posed by a complex and highly 
discontinuous solution space problem. This work uses the NDP proposed in (Salman and Alaswad 2018). The model 
optimizes traffic pattern design for a road network to reduce its congestion. Traffic direction conversion is used to 
modify the network, where roads can be converted from two-direction flow to one-direction flow. The challenging 
nature of the problem’s solution space becomes evident when one considers the impact one or few road direction 
changes could have on the network as a whole. For instance, it is possible to convert a good network design to an 
extremely congested one or an invalid network design (disconnected or absorbing) with just one or few road 
conversions. This characteristic makes the investigated NDP a good candidate for demonstrating CRO performance 
in such problems. Its objective function is discrete and non-monotone with a very large solution space characterized 
by high degree of discontinuity. 
 
The mathematical model is summarized in equations 3, 4 and 5 below. In the model 𝐷0#1 is the network’s maximum 
road traffic density and is obtained from the inequality 4. 𝑉 is the estimated total number of vehicles traversing the 
network at the time of data collection. 𝜋& is the stationary distribution probability for road 𝑖, and is obtained from 
equation 5 (via Markov chain steady state theory). In Equation 5, 𝛑 is the steady state probability vector, whose 
elements are 𝜋&. 𝐿& is road 𝑖 length, and 	𝑁& is its number of lanes. 𝑃 is the transition probability matrix. Different 
network designs can be implemented by modifying the 𝑃 matrix based on the decision to convert roads or keep them 
flowing in two-directions. A detailed description of the NDP model is beyond the scope of this paper. Interested 
readers are referred to the original paper for a thorough discussion of the model. What we will focus on here is the 
solution representation and solution methodology. 
 

Minimize  𝐷0#1      (3) 
 

Subject to:        
 

 2	4!
5!	6!

≤ 𝐷0#1      (4) 

 
 𝛑𝑃 = 𝛑       (5) 

 
To represent solutions of this NDP, a solution encoding scheme is utilized where opposing direction roads are paired 
such that network changes are expressed as modifications to traffic direction of road pairs. That is, each bit in a solution 
encoding can take a value from the set {0, 1, 2}, indicating no change, reversal of the first road direction, or reversal 
of the second road direction, respectively. This scheme reduces optimization search space considerably compared to 
a scheme where each road gets its own binary bit. The use of this scheme to represent a simple 14-links road network 
is illustrated in Figure 1. The rest of the paper focuses on the solution methodology which utilizes the NDP model 
mentioned here for evaluating the objective function values of CRO generated network designs. 
 
4. The Use of Elitism in CRO 
As mentioned in section 2, this work builds on the conical CRO. It does so without introducing significant changes 
other than adapting the algorithm’s four reaction types to the NDP at hand. Nonetheless, elitism is introduced into the 
algorithm to investigate its impact on convergence. Elitism is used frequently in evolutionary optimization to keep 
best found solutions in the population in hope subsequent solutions will borrow and benefit from their characteristics. 
 
We introduce elitism in CRO via catalysts. The algorithm maintains a fixed-size ordered list of best solutions found 
in the optimization at any time, this list is referred to as catalysts. As new best solutions are identified they are inducted 
into the list replacing the lowest ranked ones. 
 
When a reaction succeeds in meeting its energy law requirement and its products are about to replace the reactants in 
the population, the elitisim mechanisim ensures that no catalyst molecules are discarded. If the reactants include 
catalyst molecules, instead of allowing product molecules to replace them, the product molecules replace the lowest 
ranked solution in the population. This allows both product and catalyst reactant molecules to coexist in the population 
post-reaction. The discarded low ranked molecules are considered unwanted reaction byproducts.  
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Algorithms 2 and 3 detail the catalysts implementation in CRO. In Algorithm 2, nCatalysts represents the size of the 
catalysts list. Note that the logic presented in Algorithm 3 is a simplification of the logic required in an elitist CRO. 
For presentation purposes, Algorithm 3 does not address cases when multiple reactants or multiple products are 
involved. Nevertheless, this can be addressed via a straightforward extension of the presented logic. 
 

Algorithm 2: Managing the Catalysts list 
 

Input: Catalysts, nCatalysts, NewMolecule 
  1. if sizeof(Catalysts) < nCatalysts 
  2.      add NewMolecule to Catalysts 
  3.      Catalysts ← sort(Catalysts) 
  4. else 
  5.      l ← lowest rank Catalyst 
  6.      if NewMolecule.PE < l.PE 
  7.           replace l with NewMolecule in Catalysts 
  8.           Catalysts ← sort(Catalysts) 

 
Algorithm 3: Elitism logic in CRO 

 
Input: Catalysts, ReactantMolecule, ProductMolecule, Population 
  1. if ReactantMolecule not in Catalysts 
  2.      remove ReactantMolecule from population 
  3. else 
  4.      l ← lowest rank Molecule in population (highest PE) 
  5.      remove l from population 
  6. add ProductMolecule to population 

 
5. Numerical Experiments 
 
5.1 Scenario and Parameter Tuning  
This analysis utilizes the same road network data and assumption described in (Salman and Alaswad 2018) to 
demonstrate CRO’s performance in solving the NDP. Figure 2 shows results of the parameter tuning process for the 
CRO algorithm. In the plots, PE values are reported as fractions of the observed 𝐷0#1 value of the unmodified road 
network. The tuning procedure sequentially tunes each parameter over its range. Each parameter is tuned using average 
PE values calculated from three identical optimization runs (replications), each capped at 2,000 evaluations. The 
parameter value resulting in the best average PE (lowest) is selected before moving to the next parameter. Table 1 
shows the parameters and their tuned values. Due to the high PE of the randomly initialized starting solutions, 
parameters InitialKE and InitialBuffer are set to zero as they have little impact on CRO’s performance in the 
investigated NDP instance. 
 

Table 1. CRO Parameters 
 

Parameter Value Description 
PopSize 50 Initial number of molecules at the start of the optimization. 

MolColl 0.3 Inter-molecular collision probability. 

KELossRate 0.5 KE loss rate lower limit; when performing an on-wall ineffective 
collision, the product molecule keeps a portion of the reaction energy 
determined by Uniform(KELossRate,1). 

Alpha 25 Decomposition criterion; the number of unsuccessful reactions attempts 
(nHits) before a molecule is decomposed to stop local search and 
diversify. 

Beta 0.5 Synthesis criterion; perform synthesis if all involved molecules have 
KE ≤ Beta. 
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Figure 2. ECRO Parameters Calibration 
 
5.2 Analysis of Results  
With the algorithm and scenario setup, we now experiment with different sizes of the catalysts list (nCatalysts). For 
that purpose, the following list sizes are chosen: 0, 2, 4, 8, 16, 24, and 32 molecules. Each experiment is executed 5 
times and the averages of these replications are reported here. Figure 3 shows the average CRO convergence 
performance for each of the nCatalysts values as a function of number of evaluations executed. The figure shows a 
drastic performance difference between running the CRO with and without catalysts. This confirms the observations 
previously discussed that complex and highly discontinuous objective functions present a challenging solution space 
for the conical CRO algorithm. 
 
Figure 4 shows the impact of catalysts list size on the CRO algorithm performance. Just by introducing catalysts into 
the algorithm its performance improves from a best solution PE average of 0.967 for the conical CRO to a range of 
0.694-0.733 for ECRO. The results show that the size of the catalyst list is less important compared to having elitism 
logic used in CRO. 
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Figure 3. Effect of number of catalysts on CRO convergence 
 

 
 

Figure 4. Effect of number of catalysts on CRO’s final best solution 
 
Figure 5 provides a closer look at the algorithm mechanics. For this illustration a nCatalysts value of 2 is chosen. The 
colored areas show the average number of population molecules by type, depending on the reaction that produced the 
molecules. Analyzing these results highlights two observations. The immediate observation is that the total number 
of molecules in the population quickly diminishes to an average of around 5 molecules in the first 2000 evaluations. 
It then continues to diminish at a slower rate in the next 10,000 evaluations to an average of around 2 molecules. This 
observation explains the weak differentiation between results of the nCatalysts values in Figures 3 and 4. That is, 
increasing the size of the catalysts list is ineffective when the number of the molecules in the population is less than 
nCatalysts. The same diminishing number of molecules behavior is notices in all experiments with different nCatalysts 
values. The second observation is that in general inter-molecular collisions and on-wall ineffective collisions are the 
dominant reactions in the algorithm’s run history.  
 
To understand the previous observations, we further detail the optimization history and track each reaction cumulative 
success rate, as seen in Figure 6. The plot shows that in the first 2000 evaluations synthesis is much more effective in 
finding good solutions than decomposition, and it is that imbalance that results in the diminishing of the total number 
of molecules in the population. When the number of molecules reduce to 1 synthesis is no longer executed, increasing 
the chances for inter-molecular reactions. Similarly, decomposition is less likely to occur than the other reactions as 
it requires a molecule to go through a number of reactions (Alpha) without success before it is decomposed. This also 
increases the chances for on wall ineffective collisions. 
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Figure 5. ECRO container composition 
 

 
 

Figure 6. Cumulative reaction effectiveness 
 
6. Conclusion 
This paper investigates the effect of elitism on CRO when optimizing a discrete objective function with a complex 
and highly discontinuous problem solution space. Elitism is incorporated into CRO via designating molecules with 
best PE as catalyst molecules. Results show that just by introducing elitism into the CRO algorithm its convergence 
performance improves drastically (26% improvement). However, CRO convergence performance appears to be 
unaffected by the number of catalysts used in the algorithm. While surprising at first, this observation is explained by 
the fast diminishing number of molecules in the population. When the number of molecules is less than the number 
of catalysts, the impact of the latter becomes mute. Further analysis of the CRO algorithm points to an imbalance in 
the deployment of the different reactions’ types used in CRO in this NDP, which leads to the diminishing number of 
population molecules. 
 
Future directions for this work could include investigating population size preserving or adaptive CRO variants to 
help improve the algorithm’s performance further. The impact of the catalysts list size could be different under such 
algorithm variants, requiring a similar reevaluation to the one presented here. 
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