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Abstract 
The current paradigm shift in manufacturing, widely known as Industry 4.0, exists at the nexus of advances 
happening in computer science, sensing technologies, Information and Communication Technology, and big data 
analytics. It brings together Internet of Things, social networking, and advanced analytics to meet the growing need 
of personalized production at lower costs, by integrating human-like social capabilities into the assets of an 
industrial system. In this paper, we propose an innovative Multi-Agent System based distributed operations planning 
approach for scheduling of jobs in a parallel machine shop-floor. The approach harnesses the capabilities of Cyber-
Physical Systems formed by bringing together physical machines, and various functional divisions, with their cyber 
space, or agents. These agents interact with one another to form a network of social machines. Using distributed 
decision-making and communications within the network of social assets, we tackle the complex, NP-hard problem 
of job scheduling, and compare the results with that of conventional centralized operations planning approach. The 
advantages of the proposed approach are clear in terms of reduction in computation time and lateness, and the 
flexibility offered by the distributed approach. 

Keywords 
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1. Introduction
A supervisory control system is essential for a manufacturing system to fulfill its utility. Dilts et al. (1991) have 
classified the manufacturing control systems into four types viz. centralized, hierarchical, semi-hierarchical and 
heterarchical. This classification is based on the distribution of the decision-making power. Centralized systems are 
characterized by a single node responsible for all the system level decision-making. The hierarchical and semi-
hierarchical systems have several control levels, thereby allowing partial distribution of decision-making power. On 
the other hand, heterarchical systems have no fixed relationships within the constituent decision-makers. 
    Traditionally, the manufacturing control systems have been all centralized or hierarchical. Such systems are 
useful for mass production or for larger batch sizes. However they fail to address the challenges of growing 
consumer demands for high quality customized products with shorter life cycles, and the rising requirements of 
flexibility, expansibility, agility and re-configurability for the manufacturing systems (Leitão, 2009; Hu, 2013). 
Leitão (2009) points out that the distributed and intelligent control systems satisfying these needs are different from 
the ones conventionally used. Characterized by autonomous and local decision-makers, the distributed heterarchical 
systems have strong tolerance to the disturbances and ease of expansion, although at the cost of reduced global-
optimization (Leitão, 2009). Of the distributed systems, Multi-Agent Systems (MAS) and Holonic Manufacturing 
Systems (HMS) have received major interest in academia, and in industry. MAS aim at dividing a system level task 
(or goal) into numerous sub-tasks being allotted to the entities which comprise the system. These entities, which 
interact with one another to achieve their goals, are called agents. HMS are a manufacturing-centric approach 
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analogous to Koestler’s idea of biological holons, where they interact with other holons at the same level, but are 
also a part of other higher level holons (Giret and Botti, 2004). 
    Owing to the path-breaking advances in the sensing technologies, computers and the information and 
communication technologies  in the last decade, today’s industries are capable of implementing the distributed 
control systems (Ganchev and O'Droma, 2016; Unland, 2015). The cost of both sensors, and that of storing the data, 
has decreased. This reduced cost has made it possible to extensively instrument the industrial assets and generate 
prodigious data, simulating the real-time operating condition of corresponding asset. However, it is both important, 
and technologically demanding, to handle and analyze this big data to optimize both asset and system-level 
performance. The reduced size and increased ability of the modern computers makes it feasible for the modern 
industries to use the Cyber-Physical Systems (CPS). CPS is the synergy between the physical and the cyber space, to 
analyze the asset data. In the form of a micro-controller, or a mobile device, a computer (cyber space) can be 
embedded in an asset (physical space) to analyze the asset data. This creates a feedback loop where the physical 
processes affect the computations and vice versa (Lee, 2008; Jeschke et al., 2017). 
    Apart from analyzing the asset data, the embedded computer is also capable of sharing the data, over cloud, with 
those associated with several other assets in the system to form a network of assets. This network of assets is called 
the Industrial Internet of Things (IIoT) and has proven beneficial for sectors such as healthcare, airlines, etc. 
(Annunziata and Evans, 2012; Da, 2014). There are scientific evidences for a group of people under certain 
conditions arriving at better solutions to a common problem than an individual person (Surowiecki, 2004), following 
which an IIoT can be enhanced to a Social Internet of Things (SIoT). In a SIoT the assets not only share the data 
with one another, but also identify other similar assets/ friends and collaborate with one another thus showing a 
human-like social behavior. SIoT, which has witnessed applications in areas like those of traffic-routing and product 
life-cycle management, can also be extended to improve system-level performance in an asset fleet (Li et al., 2018). 
    In words of Annuziata (2013), the machines today are not only intelligent, but brilliant. Brilliant in the sense that 
they are self-aware, reactive, social and predictive. Though holding great promise for various industrial systems, the 
resource intensive domain of manufacturing provides abundant data and scope to embrace the benefits of the above 
mentioned developments under the umbrella of Industry 4.0 or Smart Manufacturing. Industry 4.0 aims at bringing 
together physical, embedded and IT systems, and the internet to improve the traditional manufacturing systems (Lasi 
et al., 2014). The data-intensive Industry 4.0 harnesses these innovations, and uses connected assets and distributed 
decision-making to improve the system-level performance. 
    Production scheduling is a critical task in a manufacturing facility. The overall system performance and other 
manufacturing activities, such as the maintenance plan, depend on the job schedule prepared. Theoretically, optimal 
or near-optimal job schedules for a fixed temporal horizon are prepared using several constraints and assuming 
complete information about the system. The constraints have to be set because of the limited computing power of a 
conventional centralized decision-making system. A schedule prepared in such a static environment using 
probabilistic models has limited application for the real-world systems because the real-world manufacturing 
facilities are dynamic in nature (Hall and Potts, 2004). Dynamic in the sense that many disturbances may arise while 
the plan is being executed- a machine may fail, rush hour demand may arise, etc. This renders a gap between theory 
and practice of job scheduling (Vieira et al., 2003). However, recent research in this field is focused on using the 
heterarchical control systems to address the practical challenges of job scheduling. 
    In this paper, we present a job scheduling algorithm for a parallel machine shop-floor which relies on a distributed 
control system- a MAS, with each asset and functional divisions of the system represented by an agent. In contrast to 
the conventional methods, where a single entity i.e. the Production Planning and Control (PPC) division, create job 
schedules for all the machines for a fixed temporal horizon, the algorithm described here involves coordination 
among multiple agents of the system, i.e. the machines and the PPC division. Such distributed approach for the 
complex combinatorial, more specifically a NP-hard  problem (Ovacik and Uzsoy, 2012) of job scheduling has not 
been employed before. In the results section, we demonstrate the significant advantage this approach offers when 
compared with the conventional centralized approach. 
    Section 2 reviews the Multi-Agent systems in the Subsection 2.1 and their application in the Subsection 2.2. The 
problem description and the objective are given in the Section 3, followed by the distributed approach for job-
sequencing in the Section 4. A centralized approach for making the job sequences is given in the Section 5, and the 
results are discussed in the Section 6. Lastly, conclusion with future work is presented in section 7. 
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2. Literature Review 
 
2.1 The Multi-Agent Systems 
Multi-Agent systems deal with “behavior management in collections of several independent entities, or agents”. 
MAS comprise of one or more agents, which interact with one another to achieve their goals and in turn the system 
approaches the overall global objective (Stone and Veloso, 2000). Leitão (2009) defines an agent as “an autonomous 
component that represents physical or logical objects in the system, capable to act in order to achieve its goals, and 
being able to interact with other agents, when it does not possess knowledge and skills to reach alone its objectives”. 
In a manufacturing facility, the decision-making ability of agents is realized by the use of CPS architecture, where 
the assets are each embedded with a computer. These agents can correspond to each machine, the functional 
divisions, the raw materials, the labor available, the products, etc. The distributed manufacturing systems offer 
advantages like parallel computing and tolerance to disturbances which reduce the computation time and make it 
possible for the system to accommodate the unforeseen disturbances such as a machine failure. The literature offers 
several examples of applying these for manufacturing operations planning. 
 
2.2 MAS application in Manufacturing Operations Planning 
The current research trends show increasing use of heterarchical control systems for dealing with the manufacturing 
operations planning. Duffie and Piper (1987) were the first to show and demonstrate the reduced complexity, 
flexibility and increased fault-tolerance and modularity offered by heterarchical architecture for manufacturing 
operations planning. Since then, we see several instances of agent based control- Giordani et al. (2013) made use of 
two-layer decentralized MAS to tackle the problem of production planning and scheduling. Here, the tasks and 
robots who perform those tasks are represented by agents which compete with one another for their preferences. 
Mönch and Drießel (2005) have showed that the parallel implementation of the simple algorithms such as the 
Shifting Bottleneck Heuristics is faster than the sequential versions. They use a two-layered hierarchical approach to 
decompose the scheduling problem into numerous sub-problems which are assigned to different machines. Lou et al. 
(2012) have used a proactive-reactive approach to tackle the job scheduling problem where a proactive schedule is 
prepared which can be modified while the system operates. This algorithm uses a blackboard-approach where the 
machines and the scheduler can communicate with one another. Upasani et al. (2017) implemented agent based 
control for maintenance planning for manufacturing shop-floor. Here the machine agents are intelligent enough to 
identify the best maintenance schedule for them, and collaborate with the Maintenance Department to ensure the 
system has enough labor to fulfill the same. They have compared the use of memetic, particle swarm, and brute 
force algorithms at the machine level, and shown the advantages of distributed maintenance scheduling over the 
conventional centralized ones. 
    Several more examples are found in the recent literature which glorifies the use of MAS for the manufacturing 
operations planning (Martin et al., 2016; Sahin et al., 2017; Xiong and Fu, 2018). The approaches discussed above 
all show the benefits of either the reduced algorithm run-time or the increased flexibility. Our algorithm differs from 
the above examples on two grounds. First, we consider the machine reliability also while generating the job 
sequences. The machine reliability is calculated by the machine agents using the data generated from the machine. 
Second, while generating the job sequence, we schedule the Preventive Maintenance Jobs (PM-Jobs) also. 
    Apart from directly using agents for parallel computation, many researchers have developed architectures which 
enable us to easily fuse the MAS approach with the manufacturing systems. Christensen (2003) proposed an 
architecture where agents focus on deliberative tasks on a higher level, while lower-level agents focus on real-time 
constrained control tasks. Bagheri et al. (2015) presented a step-wise approach to realize the application of CPS for 
the manufacturing systems. Bakliwal et al. (2018) have presented MAS architecture to implement collaborative 
learning for the industrial assets. They refer to the Digital Twins as the computational entities corresponding to the 
assets. These communicate with their friends (other similar assets) through a central platform. 
    The algorithm presented in this paper is a realization of using the emergent technologies for distributed control for 
scheduling of jobs.  
 
3. Problem Description and Objective 
In this paper, we have considered a job shop having parallel machines. We assume that the machines are made up of 
single component. These machines are identical in the sense that the jobs in demand can be processed on any of the 
machines. In addition to that, the time taken for production of the jobs is same irrespective of the machine which 
processes the job. However, the machines can be different from one another in terms of their reliability, and their 
age. The reliability of the machines is characterized using the two-parameter Weibull probability distribution, viz. 
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eta (Ƞ)- the scale parameter and beta (β) - the shape parameter. These Weibull parameters are computed, using the 
historical data pertaining to the failure of the asset, by their corresponding agents. One way of evaluating the 
Weibull parameters for the machines is by the use of RNN demonstrated by Palau et al. (2018). We also assume that 
there is only one mode of failure for the machines and hence a set of Weibull parameters completely describe a 
machine’s operating condition. 
    The PPC department receives the job demand and is responsible for creating final job schedule for all the 
machines in the industry. The job demand consists of the job names, along with their corresponding job descriptions. 
The job descriptions comprise of their processing times, the due date of the jobs, and the penalty costs per hour 
associated with late production of the jobs. In our distributed approach, the PPC coordinates with the machine agents 
to fulfill its task of producing the enterprise-level job schedule. 
    In addition, we consider the Preventive Maintenance (PM) tasks. The PM task, which we refer to as a PM-Job, 
can be scheduled between the processing of two consecutive jobs. This possibility of scheduling a PM-Job is 
referred to as a PM opportunity. It is assumed in our problem that there is no shortage of labor and, the PM-Job can 
be scheduled whenever needed at a PM opportunity. The PM-Job is characterized using two parameters- the Time to 
Repair (TTR), and the Restoration Factor (RF). The TTR is the downtime a machine would encounter when the PM-
Job is scheduled. The RF ranges from 0 to 1. It is the factor by which the life of the machine gets restored at the end 
of that PM-Job i.e. the factor of reduction in the machine age (Kijima, 1989). For example, if machine age is 1000hr, 
then a PM-Job with RF of 0.6 would reduce the machine’ age to 400hr. 
    It is important to schedule PM-Jobs in an optimal way. If the frequency of PM-Jobs is high, then the machine 
would not be able to process enough jobs in its shift duration due to increased maintenance downtime. At the same 
time, too few PM-Jobs would imply the increased probability of machine failure and unplanned downtime. 
    The PPC and machines are the two levels which collaborate with one another via their agents, and operate local 
computations over their asset data to produce an enterprise-level job-schedule. The jobs description and the machine 
failure/repair characteristics we used for our illustration are described in the Tables 1 and 2 respectively. 

Table 1: Job’s Properties 

Job Name J1 J2 J3 J4 J5 J6 J7 J8 J9 
Processing Time (𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃) in hours 55 85 205 105 155 185 225 135 225 

Due Time (𝑡𝑡𝑖𝑖𝑑𝑑) in hours 260 260 260 260 260 260 260 260 260 
Penalty cost (per job per hour) in Rupees 10 10 10 10 10 10 10 10 10 

 
  Table 2:  Machine Operating Condition Parameters 

Machine id M1 M2 M3 M4 M5 Time to Repair 
(𝑡𝑡𝑖𝑖

𝑝𝑝𝑝𝑝) in hours 
Restoration 

Factor 
beta (β) 2 2 2 2 2 

8 
 

eta (Ƞ) in hours 1000 1000 1000 1000 1000 0.6 
age (t) in hours 0 973 1969 2319 2497  

 
Assumptions 
Following generic assumptions are made in the problem: a) A job cannot be pre-empted by another job; b) Each job 
is available at the start of production schedule; c) At the beginning of production schedule machines are available; d) 
Machine can process only one job at a time; e) Machine always produces items of acceptable quality. 
    Our objective is to prepare enterprise-level job-schedule which minimizes the penalty cost. As seen in the job 
descriptions, the penalty cost is the same for all our jobs, hence minimizing the penalty would mean minimizing the 
lateness of production of the jobs. Each machine would finally be allotted a sequence of jobs. In the following 
sections, we present a distributed approach and a centralized approach for comparison of the results. 
 
4. Distributed Approach 
The assets, or the departments, in modern industries are each provided with their own computational entities in the 
form of an embedded micro-controller, or a processor which make it possible for us to represent that asset using 
what is called an ‘agent’ of the asset. The asset data reflects its working condition, on which the local computations 
are based. Thus, the corresponding agent is capable of independent decision-making based on the asset’s data. An 
agent further linked to the agents of other assets to enable human-like interaction. Interaction here means the sharing 
of data, or the computational results at different levels. 
    The distributed job scheduling algorithm proceeds in the below listed steps: 
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1. The job demand reaches the PPC department. 
2. PPC Department circulates the job demand across all machine agents. 
3. Machine agent analyzes their respective past time-to-failures data and fits a reliability model (Weibull 

distribution, in the present case) to represent the health of each machine. 
4. The machine agent uses heuristics to generate a set of optimal job sequences, which also include the PM-Jobs, 

according to the required objective. 
5. Each job-sequence generated in the above step is assigned an index of feasibility for comparing with other 

sequences, generated by the same machine or other machines, at the enterprise-level. This index, or the Intensity 
Factor (IF) is explained in subsection 4.1. 

6. List of job-sequences from each machine is sent back to the PPC department which evaluates them and prepares 
the enterprise-level job schedule. 

7. PPC communicates these final schedules to all the machines for execution. 
    The above described steps are shown in the Figure 1. Computations happening at each level are explained under 
in the subsequent subsections. 
 

 
Figure 1. Schematic description of the data flowing within the Manufacturing environment 

 
4.1 Machine Agent 
The job demand first reaches the PPC. The PPC agent sorts the job list in increasing order of their processing times. 
This is done to reduce the computation load at machine level as it is a common step for the subsequent calculations 
at each machine agent level. This sorted job demand is then circulated across the machine agents. 
    The machine agent identifies a set of optimal sequences for its corresponding asset. It also includes PM job. 
Machine agent also evaluates the health of the machine in terms of probability of failure 𝐹𝐹(𝑡𝑡) using the Weibull 
parameters (Ƞ;  β). We evaluate 𝐹𝐹(𝑡𝑡) for the machine after each job in the sequence, i.e. if a 1000 hours old machine 
sequence has the first job J3 with processing time 205 hours, we will calculate the machine’s probability of failure 
after the processing time of J3 i.e. at the age 1205 hours. This 𝐹𝐹(𝑡𝑡) is evaluated using the Equation 1: 

𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒�−
𝑡𝑡
Ƞ�

β

                                                                                                                                                                          (1) 
If, while calculating 𝐹𝐹(𝑡𝑡), we find that it goes above a certain limit, we schedule a PM-Job. While this limiting value 
of the probability of failure can be adjusted according to the needs of the system, in our algorithm this limit is set at 
0.5. The machine agent is responsible for evaluating the machine health after each demand job scheduled, and also 
scheduling the PM-Jobs.  
   ‘Optimal’ sequence for our illustration refers to the sequence corresponding to the minimum cumulative delay/ 
lateness in production. Delay in production of a job is the difference between the due time and the time at which the 
job has been produced i.e. completion time (𝑡𝑡𝑖𝑖𝑐𝑐). Cumulative delay is the sum of all the jobs in the demand received. 
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This cumulative delay of jobs is called ‘lateness’ corresponds to the sequence. The lateness in production of jobs 
when produced in a given sequence is termed as Intensity Factor (IF) of the sequence. IF is used first by the machine 
agent, and later by the PPC agent while preparing the enterprise-level job-schedule. Calculation of IF is explained in 
the following subsections. 
It is solely to the manager to decide upon the algorithm which the machine agent would use to generate the set of 
optimal job sequences. The machine agent may resort to basic brute force algorithm for smaller problem sizes, or to 
other advanced heuristics and meta-heuristics for more complex problems. These may not lead to the best solution, 
but a near-optimal solution (Upasani et al., 2017). 
    IF is a common measure throughout the system. The objective in our algorithm is to minimize the lateness i.e. IF. 
The method of calculating the IF is shown below and the formula is given in the Equation 2:  

𝐼𝐼𝐼𝐼 =  �𝑡𝑡𝑖𝑖𝑐𝑐
𝑛𝑛

𝑖𝑖=1

−     𝑡𝑡𝑖𝑖𝑑𝑑                                                                                                                                                                           (2) 

where, 𝑛𝑛 is the total number of jobs in demand, and 𝑡𝑡𝑖𝑖𝑑𝑑 is due time of the 𝑖𝑖𝑡𝑡ℎ job. The 𝑡𝑡𝑖𝑖𝑐𝑐 is completion time of 𝑖𝑖𝑡𝑡ℎ 
job. It is sum of operations time (𝑡𝑡𝑖𝑖𝑜𝑜) of the same job sequenced at 𝑘𝑘𝑡𝑡ℎ place and operation times of preceding jobs 
on the machine and estimated as: 

𝑡𝑡𝑖𝑖𝑐𝑐 = �[𝑡𝑡𝑖𝑖𝑜𝑜]𝑘𝑘                                                                                                                                                             (3)
𝑘𝑘

𝑘𝑘=1

 

The operation time of 𝑖𝑖𝑡𝑡ℎ job sequenced on the machine at 𝑘𝑘𝑡𝑡ℎ place includes job processing time (𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃), machine 
downtime due to PM (𝑡𝑡𝑖𝑖

𝑝𝑝𝑝𝑝). It is calculated as: 
𝑡𝑡𝑖𝑖𝑜𝑜 = 𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃 + 𝑡𝑡𝑖𝑖

𝑝𝑝𝑝𝑝                                                                                                                                                           (4) 
An example describing the IF calculation for a sequence is shown below: 
Consider a sequence of jobs out of a total demand of 9 jobs described in the Table 1: 

J1, PM-Job, J4, J3, PM-Job, J6 
The IF for this sequence will be calculated as: 
    Here, the due time for all jobs is same (see, table 1), and if a job manufactured before its due time, its lateness will 
be zero. 

𝐼𝐼𝐼𝐼 =  �𝑡𝑡𝑖𝑖𝑐𝑐
𝑛𝑛

𝑖𝑖=1

−     𝑡𝑡𝑖𝑖𝑑𝑑 = [(55 − 260) + (168 − 260) + (373 − 260) + (566 − 260)] = 419 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

In summary, the machine agent has to perform the following tasks after receiving the demand job list from the PPC: 
1. Evaluate time-to-failures distribution parameters.  
2. Generate a list of the optimal job sequences which the machine can perform in its shift duration and based 

on its reliability characteristics. 
3. Assign the PM-Jobs whenever necessary and calculate the IF for each sequence. 
4. Assign the IF to the pool of job sequences generated in the task-1, and send these to the PPC agent. 

 
4.2 PPC agent 
When the PPC receives the job sequences from the machine agents it has to produce an enterprise-level job 
schedule. The PPC agent arranges all the job sequences in decreasing order of IFs (because lower the IF, more 
optimal is the corresponding sequence). The PPC then starts assigning the job sequences to each of the machines, 
starting with assigning the first sequence to the corresponding machine. Once this is done, the remaining sequences 
corresponding to this machine are deleted (because the machine is already assigned a job sequence). For similar 
reasons, the remaining sequences having jobs of this sequence are also deleted. The PPC then assigns the next 
sequence on the list to the corresponding machine, and the procedure keeps on repeating itself until all the jobs are 
assigned to the machines. This way, an enterprise-level job-schedule is prepared using inputs from machines 
considering PM requirements. The computations steps at the PPC level after receiving the job-preferences from the 
machines are shown in the Figure 2. 
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Figure 2. Computations at the PPC level after receiving the job-preferences from the machines 

 
5. Centralized Approach 
In the conventional centralized approach, the computations are done at a single level. There is only one entity to 
govern the operations involving several assets. For example, in our case the computations are done at the PPC level 
only. Although the operation of job scheduling involves several machines, the PPC solely generates the optimal job 
scheduling decisions for all the machines. 
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Conventionally, an enterprise-level scheduling algorithm is applied at the PPC level. This algorithm generates the 
job sequences for all the machines. In this approach, the PPC receives the job demand. Then, it generates the optimal 
job sequences for the machines such that lateness is minimized. Here, the lateness is calculated using Eq. (2); 
however, operation time calculation does not include PM time (𝑡𝑡𝑖𝑖

𝑝𝑝𝑝𝑝). The new operation time (𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐) equation is 
estimated as: 
𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃                                                                                                                                                                       (5) 
    The maintenance decisions are superimposed on the optimal job sequences generated by the PPC based on the 
machine health calculated in terms of 𝐹𝐹(𝑡𝑡). 𝐹𝐹(𝑡𝑡) is calculated using Eq. (1) based on the reliability characteristics of 
machines after each job in the sequence. If the 𝐹𝐹(𝑡𝑡) value reaches to more than the limit i.e. 0.5, a PM-Job is 
assigned. The lateness of final schedule (considering PM -jobs) is calculated using Eq. (2). 
 
6. Results 
The betterment seen in terms of the reduced computation times and in terms of decreased lateness while using the 
above described distributed scheduling algorithm, is discussed here. For our example, we consider the job 
scheduling problem for different combinations of number of machines and the jobs to be scheduled, starting from 
scheduling 2 jobs into 2 machines till scheduling 9 jobs into 5 machines. All the cases (1-9) are shown in the table 3. 
    We use both- our distributed approach and conventional centralized approach to schedule the jobs in the above 
cases. The job scheduling problems are well-known and proved NP-hard (Kumar and Lad, 2016; Xie and Chen, 
2018) and are of combinatorial non-linear optimization in nature (Kim et al., 2013). To solve such problems, 
simulation coupled with optimization is most widely used method (Sharma et al., 2011). Thus, the same is utilized 
here to solve the above cases. Jobs characteristics and machines properties are coded in Witness 14 simulation 
platform for all cases. For optimization, Adaptive Thermo-statistical Simulated Annealing (ATSA) and brute force 
(evaluate all combinations) techniques have been used. The Brute Force (BF) technique guarantees the optimality of 
the solution while ATSA provide near-optimal solution in less computation time. The results of all the cases in terms 
of computation time and lateness have been shown in table 3 and are summarized in figure 3.  
Distributed and centralized approaches are evaluated for all the cases using ATSA technique. While using Brute 
Force (BF) technique, centralized approach is evaluated for smaller problem size cases (1-4); for larger problem size 
cases (5-9), it takes more than 24 hours of computation time which is impractical. Thus, cases (5-9) are not 
evaluated utilizing Centralized Brute Force (CBF) approach. The Distributed Brute Force (DBF) evaluates cases (1-
8) and for last case (9), it takes more than 3 hours of computation time due to large solution space, thus is not 
evaluated. 
    Though the centralized Brute Force is expected to produce most optimal solution as it evaluates all the possible 
combination in the optimization problem, the time take for such approach is major limitation. In fact, it will be 
impractical to use brute force approach for most of the real life problems. The same can also be seen from figure 3 
(left) where the time taken for CBF approach increases exponentially after case number 2 (problem size 27). 
However, the results for smaller problem size (up to case number 4) help us in getting an idea about the 
effectiveness of various approaches in terms of objective function (lateness). It can be seen from table 3 that, for 
smaller problem size distributed brute force provides optimal solution closer to the centralized brute force. Thus, in 
the absence of CBF results we may consider DBF results as the benchmark for further comparison. The centralized 
and distributed ATSA are slightly deviated from the most optimal solution for case number 2. From figure 3 we can 
see that distributed ATSA provides better solution (in terms of lateness) than that of the centralized ATSA. This is 
happening because the centralized approach is more of interrelated nature, as the maintenance schedule is 
superimposed on the final optimal production schedule. This is equivalent of saying that the production planning 
department is not aware of the machine health while making the production schedule and it superimposes the 
maintenance schedule received from the maintenance department. On contrary, the distributed approach gets the 
opportunity to evaluate the maintenance jobs for each of the possible solutions checked at machine level as it is 
aware about the health of the machine. Thus, distributed approach is more of integrated nature from the decision 
point of view. Further, advantages of distributed approach can be seen from the figure 3 (middle) which shows 
significantly lesser computation time taken by the distributed ATSA compared to centralized ATSA. Thus, 
distributed approach can be considered as a promising approach to solve complex shop floor scheduling problem.  

3812



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 
 

© IEOM Society International 
 

Table 3: Comparison of results obtained from centralized and distributed approaches for different cases 

Case 
No. 

No. of 
Machines 

No. of 
Jobs 

All possible 
combinations 

Computation time in 
seconds 
(ATSA) 

Computation time in 
seconds  

(BF) 

Lateness in hours 
(ATSA) 

Lateness in hours 
(BF) 

Centralized 
(CATSA) 

Distributed 
(DATSA) 

Centralized 
(CBF) 

Distributed 
  (DBF) 

Centralized 
(CATSA) 

Distributed 
(DATSA) 

Centralized 
(CBF) 

Distributed 
  (DBF) 

1 2 2 23 16 5 16 5 0 0 0 0 
2 2 3 27 52 14 159 15 8 8 0 0 
3 3 3 29 66 17 924 17 0 0 0 0 
4 3 4 213 99 19 1937 72 0 0 0 0 
5 3 5 217 179 22 NA 621 63 48 NA 28 
6 4 4 216 167 20 NA 74 0 0 NA 0 
7 4 5 221 193 23 NA 688 8 0 NA 0 
8 5 6 231 226 26 NA 7367 8 8 NA 0 
9 5 9 249 247 28 NA NA 136 118 NA NA 

 
                      
 
 

 

  
 

Figure 3.  Comparison between centralized approach and distributed approach 
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7. Conclusion and Future Work 
This paper proposes an innovative Multi-Agent System based distributed operations planning approach for 
scheduling of jobs in a parallel machine shop-floor. The approach is demonstrated for various cases. Each case is 
solved by the proposed distributed approach and conventional centralized approach to compare the results. Here, 
two different optimization techniques Adaptive Thermo-statistical Simulated Annealing (ATSA) and brute force are 
utilized for optimization. The proposed distributed approach utilizes cyber-physical-systems, parallel computing and 
communication capabilities of various agents (machine and PPC). This is one of the essential requirements of 
decision-making in smart factories under Industry 4.0. For complex problems, distributed approach provides best 
solution in least computation time. Therefore, distributed approach can be one of the alternatives for shop-floor 
operations planning for next generation manufacturing systems. In an event of failure, sudden surge in demand, or 
any other disturbance the system can go for rescheduling of jobs. This is made possible by the highly reduced 
computation time.  
    The future prospects are two-fold. First, to resemble the real-world manufacturing shop-floor more closely, the 
number of components of the machines can be increased and the processing times of the jobs can be different for 
different machines. The Maintenance Department can also know the quality of labor available and evaluate the 
variances in the PM-Jobs description, like the changes in restoration factors when using skilled or semi-skilled 
workforce. Secondly, the benefits of collaborative and distributed decision-making presented in this work can be 
carried forward to represent the entire shop-floor using agents, which collaborate with one another to govern several 
different operations. The agents can be used to represent the raw-materials, the consumers, the AGVs, etc. 
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