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Abstract 

Recent studies of warehouse layout designs show that the travel distance for order-picking operations can be reduced 
by changing the angle of the cross aisles in the traditional warehouse layout. Thus, in this study, a new design idea is 
proposed to search for better layouts for order-picking operations than traditional two-block layouts. For this, two 
angled cross aisles are allowed to intersect in the middle of the storage area. A new constructive aisle model is 
developed so as to evaluate all possible layouts that can be generated in this problem. In order to calculate order 
picking tour length for a given number of visits, one of the best known metaheuristics algorithm called Ant Colony 
Optimization algorithm is used. Next, Differential Evolution algorithm is used to explore the best values of the design 
variables to minimize average order-picking tour length for a given number of orders. Last, it was shown that two-
block layouts are superior to the best-found designs with two angled and intersected cross aisles under the considered 
design assumptions in this study. 
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1. Introduction

Increasing online sales have been reshaping supply chain network of retail stores and operations in their warehouses. 
Customers may request one pencil or one AC from online stores. Considering the variety of products, their sizes and 
units that are requested by online customers, order-picking operation in warehouses has been increasingly playing an 
important role to provide competitive advantage to companies because customers expect to receive their orders quick 
and accurate. Thus, warehouse managers highlight that order-picking accuracy and order-cycle time are two of the 
important key performance metrics for managing warehouses efficiently (Warehousing Educational and Resource 
Council, 2018). For these metrics, order-picking operation is regarded as the most critical warehouse operation 
because it causes 60% of the total cycle time and 50% of the total operational cost (Frazelle and Frazelle, 2002; De 
Koster, 2007; Bartholdi and Hackman, 2011) when it is compared to other major warehouse operations such as 
receiving, put-away and shipping.  

A typical order-picking operation requires order pickers to visit many locations to pick items in small quantities to 
fulfill customer orders. While managers perform several policies such as batching and product allocation to increase 
the order-picking operation’s efficiency in terms of travel time, its efficiency is also affected by the layout of the 
storage area, which unfortunately has been undervalued for a long time by researchers because it is known that when 
a warehouse is built it is very difficult and expensive to change it. Because of the importance of a warehouse layout, 
this study aims to search for whether a new layout is generated to improve order picking operation’s efficiency in 
warehouses. 
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Designing of a warehouse layout includes a series of decisions related to the number and the locations of pick-up and 
deposit (P&D) points, the width to depth ratios of a rectangular shape area, the number and the orientation of cross 
aisles, the orientation and the width of picking aisles etc. Many of the previous studies supposed that picking aisles 
and cross aisles are either horizontally or vertically arranged in warehouse layouts. These layouts, called traditional 
hereafter, are demonstrated in Figure 1. Although traditional layouts are very common in practice and academic 
studies, there are some studies that proposed non-traditional layouts to reduce travel distance in warehouses. The first 
idea of angled aisles in warehouses is conceptually suggested by Berry (1968) and White (1972). Gue and Meller 
(2009) improved that idea and presented a new warehouse design. With their two-innovative designs, the authors 
showed that the expected single command distance could be decreased about 10-20% compared to equivalent 
traditional designs. Using the concept of angled aisles, Öztürkoğlu et al. (2012) also proposed non-traditional 
warehouse layouts that present 13-20% savings in the expected-single command distance over equivalent traditional 
layouts. As both Gue and Meller (2009) and Öztürkoğlu et al. (2012)’s layouts are developed for centrally-located 
single P&D point, Öztürkoğlu et al. (2014) developed non-traditional layouts for different sets of multiple P&D point 
configurations using their constructive aisle model for minimizing expected single command distance. Different from 
these studies, Dukic and Opetuk (2008), Pohl et al. (2009) and Çelik and Süral (2014) investigated the efficiency of 
one of the proposed layouts, called Fishbone, by Gue and Meller (2009) for different travel commands. Pohl et al. 
(2009) showed that the Fishbone design presents around 10% reduction on dual-command travel compared to 
traditional layouts. Although Dukic and Opetuk (2008) presented that Fishbone designs cause longer travel distances 
for order-picking operation than Design B, Çelik and Süral (2014) showed that the average order-picking tour length 
could be reduced about 5-10% for small pick list sizes. The used algorithm for calculating order-picking tour length 
causes the reason of the difference between those studies.  
 

 
Figure 1. Traditional warehouse Layout examples 

 
Because the non-traditional layout studies solely focused on Fishbone design for order-picking operation, the next 
section introduces a new warehouse design problem and its model. Section 3 presents our implementation of Ant 
Colony Optimization (ACO) algorithm for calculating order-picking tour length in a given layout. In section 4, we 
discussed our implementation of Differential Evolution algorithm to search for the best values of the design variables 
that minimize the average order-picking tour length. Section 5 presents the resulting new designs and their 
comparisons with traditional layouts. The last section presents concluding remarks and discussion of possible future 
directions. 
 
2. The New Warehouse Layout Problem 
 
Although previous non-traditional aisle studies considered angled aisles, their designs are restricted with non-
intersecting cross aisles. In this study, we relax that assumption and introduce a new design problem. This design 
problem has several assumptions. 
 

• The storage area in the warehouse has a rectangular shape. Each side of the warehouse is also a cross aisle 
that aims to facilitate travel between locations. They are called “periphery cross aisles”.  

• There are two inserted linear angled cross aisles in the storage area that intersect in the center of the 
warehouse. In particular, the presence of the center point is expected to facilitate travel between storage 

a) Design A 
 

b) Design B 
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locations. Although, they are also allowed to be originated from any side of the warehouse they are not 
allowed to overlap.  

• Two intersecting cross aisles divide the warehouse into four picking regions. The picking aisles in each region 
assumed to be parallel to each other. 

• There is only one P&D point in the warehouse and it is located in the middle of the front cross aisle.  
 
Hence, we call our problem “X-shape aisle design” problem. Figure 2 shows the simple representation of X-shape 
non-traditional warehouse. 𝑆𝑆1and 𝑆𝑆2 refer the starting points of the first and second cross aisles, respectively. 𝐸𝐸1 and 
𝐸𝐸2 are referred as ending points of cross aisles, respectively. Point O is the centroid of the storage area. There are four 
picking regions in a warehouse that is divided by the intersecting two angled cross aisles. First picking region is 
assumed to be the area between 𝑆𝑆1 and 𝑆𝑆2. Second region is specified as the area between 𝑆𝑆2 and 𝐸𝐸1 and the other 
regions are indexed in clockwise direction. Hence, angles of picking aisles in these respected picking regions defined 
by index 𝑖𝑖 ∈ {1,2,3,4} and are indicated by 𝛼𝛼𝑖𝑖 ; 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝜋𝜋. Because point O is supposed to be fixed and the angled 
cross aisles are supposed to be linear,  any X-shape warehouse layout can be represented by a vector of variables 
without the need of end points of the cross aisles:  �𝑆𝑆1𝑥𝑥 , 𝑆𝑆1𝑦𝑦 , 𝑆𝑆2𝑥𝑥 , 𝑆𝑆2𝑦𝑦 ,𝑂𝑂𝑥𝑥,𝑂𝑂𝑦𝑦 ,𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4 � , where (𝑆𝑆1𝑥𝑥 , 𝑆𝑆1𝑦𝑦) , 
(𝑆𝑆2𝑥𝑥, 𝑆𝑆2𝑦𝑦) and (𝑂𝑂𝑥𝑥,𝑂𝑂𝑦𝑦) are the (x,y) coordinates of 𝑆𝑆1, 𝑆𝑆2 and O, respectively.  
 

 
 

Figure 2. The demonstration of X-shape warehouse design problem 
 
The idea of representing a general warehouse design with a vector was seen first in Öztürkoğlu et al. (2014). The 
authors developed a constructive aisle model to generate any layout represented by their encoding. To simplify their 
encoding, they used a closed loop continuous coordinate system. We also adopted their approach to simplify our 
encoding. In this coordinate system, the upper left, upper right, lower right and lower left corners of the rectangular 
storage area take the values of 0, 1, 2, 3 respectively (see Figure 2). In order to form a closed loop, the upper left 
corner also takes the value of 4. Hence, the variable  𝑚𝑚 ∈ [0,4] is used to indicate the initial point of first angled cross 
aisle, which also replaces 𝑆𝑆1. Moreover, le 𝛽𝛽 t be the clockwise angle (0 ≤ 𝛽𝛽 ≤ 𝜋𝜋) between the first and the second 
angled cross aisles. When 𝑚𝑚 and 𝛽𝛽 is known, the initial point of the second angled cross aisle can easily be obtained, 
as well as its end. Last, the encoding is reduced to {𝑚𝑚,𝛽𝛽,𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4 }. We also studied on the symmetric layouts 
based on the orientation of the angled cross aisles. Thus, we can reduce the search space of 𝑚𝑚 ∈ [0,2]. 
 
In the constructive aisle model of Öztürkoğlu et al. (2014), after a layout is generated for a given encoding, its network 
is developed so that travel distances between storage locations and P&D points could be calculated. Although our 
problem differs from Öztürkoğlu et al. (2014)’s problem due to intersecting cross aisles in the center, we adopted their 
approach because the concept is similar. Hence, the layout is simply generated using their procedure for a given 
encoding.  
 
After a layout is generated, we develop its network. A typical warehouse network consists of a set of special nodes 
called access nodes, pick-up and deposit nodes, travel nodes and cross nodes (see  Figure 3 for demonstration). Access 
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nodes are the points that are located on the central line of a picking aisle. As seen in the figure, even though some 
access nodes, of which one serves the pallet location on the left and the other serves to the pallet location on the 
opposite side, are located on the same coordinate, however they are uniquely defined for the purpose of accurate 
network representation. In order to allow travel between these nodes, they are connected by an edge with a distance 
of zero. The centers of the pallet locations are used to calculate the coordinates of these access nodes. The pick-up and 
deposit nodes represent the existing P&D points from and to where materials go through. Travel nodes are intersecting 
points of central lines of picking and cross aisles that are assumed to be used to access to the picking aisles. Last, cross 
nodes are defined as the intersects of central lines of cross aisles that are used to change aisles for ease of travel to the 
required locations. For the sake of clarification, only cross nodes that are made from intersecting side cross aisles 
shown on the figure. Last, appropriate nodes are connected by edges with a weight of distance between the connected 
nodes. We assume that edges are undirected that allow two-way travel with the same distance. Once the network of a 
layout is generated, it is easy to calculate travel distances between locations. 
 
 

 
Figure 3. Travel nodes, access nodes and cross nodes representation 

 
3. Order-Picking Tour Length  
An order picker route is the path that is constructed by the sequence of locations that need to be visited by the picker 
according to a given pick list. A pick list consists of required items and their locations to be visited by a picker. A 
picker visits these locations in a tour starting and ends at a P&D point. Hence, the length of a tour is the total distance 
required to visit these locations starting from P&D point and ending at the P&D point. Last, this problem resembles 
to well-known TSP problem and the aim is to find the shortest route length for order picking operation.  
 
In order to solve order-picking routing problem in warehouses, exact algorithms and heuristics were developed. In 
traditional layouts, Ratliff and Rosenthal (1983), Roodbergen and De Koster (2001a), Gelders and Heeremans (1994), 
Roodbergen and de Koster (2001b) and Öztürkoğlu and Hoşer (2018) developed exact approaches to solve optimal 
order-picking tour lengths for given orders. In addition to these exact algorithms, special heuristics, such as s-shape, 
aisle-by-aisle, largest-gap, mid-point, and return, have been proposed for generating reasonable routes in traditional 
warehouse designs (Kunder and Gudehus, 1975; Hall, 1993; Petersen, 1997; Roodbergen and de Koster, 2001b). 
Because many of these algorithms either work well or are specifically designed for traditional layouts, we prefer to 
use a metaheuristic algorithm.    
 
For our model’s route length calculation, we preferred the Ant Colony Optimization (ACO) algorithm, which was 
firstly designed by Dorigo and Gambardella (1997) for the discrete TSP problem. This metaheuristic algorithm is 
inspired by acting ants in the nature. Because ants secrete a hormone, which is called pheromone, they can find their 
direction. The ants leave the pheromones on the roads they are passing through and choose from alternative routes as 
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they return to the point of food or nest. These pheromones actually a sign for other ants. The choice made depends on 
the distance of the roads and the amount of pheromone on the route. In the alternative routes if the pheromone amount 
is equal, more ants began to prefer shorter routes. Then, the pheromone amount on the shortest route increases that 
results in favouring the shortest route.   
 
The algorithm starts with c number of ants that are randomly assigned to a point. At each step, an ant determines its 
next point probabilistically, depending on the distance and the amount of pheromone. In tour 𝑡𝑡, ant 𝑘𝑘 can travel 

between 𝑖𝑖  to 𝑗𝑗  points in a probability of 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 =
[𝜏𝜏𝑖𝑖𝑖𝑖]𝑃𝑃𝑃𝑃 [𝜂𝜂𝑖𝑖𝑖𝑖]𝑉𝑉𝑉𝑉 

∑ [𝜏𝜏𝑖𝑖𝑖𝑖]𝑃𝑃𝑃𝑃 [𝜂𝜂𝑖𝑖𝑖𝑖]𝑉𝑉𝑉𝑉 
𝐼𝐼∈𝑁𝑁𝑖𝑖

𝑘𝑘
,  𝑖𝑖𝑖𝑖 𝑖𝑖 ∈ 𝑁𝑁𝑖𝑖𝑘𝑘 . In this function 𝜏𝜏𝑖𝑖𝑖𝑖  represents the 

pheromone amount between points 𝑖𝑖 and 𝑗𝑗. 𝜂𝜂𝑖𝑖𝑖𝑖 is visibility intuitive value, which is the reverse of distance between 𝑖𝑖 
and 𝑗𝑗 points (1 𝑑𝑑� 𝑖𝑖𝑖𝑖

). 𝑃𝑃𝑃𝑃 and 𝑉𝑉𝑉𝑉 are variables that determine the pheromone and visibility intuitive’s relative effect 

according to decision function. For example; 𝑃𝑃𝑃𝑃 = 0 means that pheromone amount is ignored, just visibility intuitive 
is important. 𝑉𝑉𝑉𝑉 =  0 means that selection is made only based on the amount of pheromone. 𝑁𝑁𝑖𝑖𝑘𝑘 is a set of unvisited 
point of ant 𝑘𝑘 when it is located at point 𝑖𝑖. The best route which is made by ants visiting for all points until that time 
is kept. The ants continue to form routes depending on the amount of pheromone until stopping criterion is reached. 
 
Once we obtained the best route in every iteration, we apply 2-opt local search algorithm to improve the solution. This 
algorithm is for shifting the two consecutive links to search for better solutions. We prefer this algorithm because it is 
easy to implement and efficient way to improve a solution. In our implementation, if a solution is improved apter 
applying the 2-opt local search algorithm, we updated the best tour. In case there is no improvement, the ACO 
algorithm continues with the current best solution. For the distances between picking locations and the P&D points, 
we use Dijkstra’s shortest path algorithm for a given pick list.  
 
4. Design Optimization: Differential Evolution (DE) Algorithm 
 
In this stage, the route will be calculated according to the pick list given in a warehouse in which the layout is enhanced 
and the network is created. The average route length is calculated for an order consisting of a certain number of 
collection points. This can be thought of as the fitness value of the warehouse. As we mentioned in the previous section, 
the aim is to minimize this fitness. The main problem in achieve this aim is the best values of the variables in the 
encoding. These variables are continuous variables. In order to optimize variables, we prefer one of the metaheuristic 
algorithms that showed efficacy in continuous variable optimization; Differential Evolution Algorithmb.   
 
Differential Evolution Algorithm (DE) is proposed by Storn and Pierce (1997). The simple DE algorithm is an 
evolutionary algorithm. Like genetic algorithms (GA) and evolutionary strategies, it can be used to improve the results. 
This is one of the metaheuristic algorithms which is a population-based and stochastic search tool. Due to this tool 
can be applicable to both discrete and continuous optimisation problems, it is frequently used in recent researches. Its 
simple structure, good results in complex problems, ease of implementation and robustness are the advantages of a 
basic DE algorithm (Jitkongchuen and Thammano, 2014). For continuous problems, according to Kitayama et al., 
(2011) the results of comparison between DE and Particle Swarm Optimisation (PSO) showed that DE algorithm is 
more efficient than PSO algorithm.  
 
The algorithm must be followed by four main steps and these steps are shown in Figure 4. With the first step as 
initialization, the algorithm starts to optimize according to variables. We denoted the population size as P for 
implementation and G is used as generation number. So, the vector with D-dimension can be represented as 𝑋𝑋𝑖𝑖,𝐺𝐺 =
 �𝑥𝑥𝑖𝑖,𝐺𝐺1 , 𝑥𝑥𝑖𝑖,𝐺𝐺2 , … , 𝑥𝑥𝑖𝑖,𝐺𝐺𝐷𝐷  � , 𝑖𝑖 = 1,2, … ,𝑃𝑃 . To cover all the search space, parameters’ upper and lower bounds should be 
defined. After definition of boundaries, first parameter of value selection is made randomly from boundaries. The 
initialization phase completes after each P parameter in the vector is defined.  
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Figure 4. Main steps of DE algorithm 
 
The second step as mutation, is used for expanding the search area. For given 𝑋𝑋𝑖𝑖,𝐺𝐺  parameter, under 𝑖𝑖 ≠ 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3 
situation, three different parameters 𝑋𝑋𝑟𝑟1,𝐺𝐺 ,𝑋𝑋𝑟𝑟2,𝐺𝐺  and 𝑋𝑋𝑟𝑟3,𝐺𝐺 are selected randomly. With 𝑉𝑉𝑖𝑖,𝐺𝐺+1 =  𝑋𝑋𝑟𝑟1,𝐺𝐺 + 𝐹𝐹�𝑋𝑋𝑟𝑟2𝐺𝐺 −
 𝑋𝑋𝑟𝑟3,𝐺𝐺 �  formulation, a mutation vector is created. In this formulation, F is a mutation factor and 𝑉𝑉𝑖𝑖,𝐺𝐺 =
�𝑣𝑣𝑖𝑖,𝐺𝐺1 , 𝑣𝑣𝑖𝑖,𝐺𝐺2 , … , 𝑣𝑣𝑖𝑖,𝐺𝐺𝐷𝐷 � vector represents the donor vector.  
 
In order to optimise our design problem in the mutation step, two different strategies were integrated in DE. These 
strategies are described in the following formulas. During the mutation operation, each strategy is applied with equally 
likely. The decision of which parameter is going to be use in mutation is chosen randomly in the range [1,𝑃𝑃]. 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐺𝐺 is 
the best vector which has the best fitness at generation G. 
 

• DE/ Best/1: 𝑉𝑉𝑖𝑖,𝐺𝐺 =  𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐺𝐺 + 𝐹𝐹 �𝑋𝑋𝑟𝑟1𝑖𝑖 ,𝐺𝐺 −  𝑋𝑋𝑟𝑟2𝑖𝑖 ,𝐺𝐺 �  (Storn, 1996) 

• DE/Rand/2:  𝑉𝑉𝑖𝑖,𝐺𝐺 =  𝑋𝑋𝑟𝑟1𝑖𝑖 ,𝐺𝐺 + 𝐹𝐹 �𝑋𝑋𝑟𝑟2𝑖𝑖 ,𝐺𝐺 −  𝑋𝑋𝑟𝑟3𝑖𝑖 ,𝐺𝐺 � + 𝐹𝐹 �𝑋𝑋𝑟𝑟4𝑖𝑖 ,𝐺𝐺 −  𝑋𝑋𝑟𝑟5 
𝑖𝑖 ,𝐺𝐺 �  (Qin et al., 1997) 

 
The recombination step involves successful solutions of the previous generation. Donor vector elements are included 
in the trial vector (𝑈𝑈𝑖𝑖,𝐺𝐺 = �𝑢𝑢𝑖𝑖,𝐺𝐺1 ,𝑢𝑢𝑖𝑖,𝐺𝐺2 , … ,𝑢𝑢𝑖𝑖,𝐺𝐺𝐷𝐷 �) with crossover rate (CR) probability. DE uses a uniform recombination 
as in defined below (Storn and Price, 1997). 
 

𝑢𝑢𝑖𝑖,𝐺𝐺
𝑗𝑗 = �

𝑉𝑉𝑗𝑗,𝑖𝑖,𝐺𝐺+1   𝑖𝑖𝑖𝑖 �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗,𝑖𝑖  ~ 𝑈𝑈[0,1]� ≤ 𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 (𝑗𝑗 = 𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
𝑥𝑥𝑗𝑗,𝑖𝑖,𝐺𝐺+1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, 𝑗𝑗 = 1,2, … ,𝐷𝐷, 𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a random integer from [1, 2,.., D]. 

In the selection process, which is the last step of DE, compares the target vector 𝑋𝑋𝑖𝑖,𝐺𝐺  and trial vector 𝑢𝑢𝑖𝑖,𝐺𝐺+1
𝑗𝑗 . It is 

ensured that the better value of the function is transferred to the next generation. With the equation 𝑋𝑋𝑖𝑖,𝐺𝐺+1 =

�
𝑈𝑈𝑖𝑖,𝐺𝐺 , 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑈𝑈𝑖𝑖,𝐺𝐺+1) ≤ 𝑓𝑓(𝑋𝑋𝑖𝑖,𝐺𝐺)
𝑋𝑋𝑖𝑖,𝐺𝐺                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑖𝑖 = 1,2, … ,𝑃𝑃, if the trial vector has lower function value then this trial vector is selected 

as a next generation. If it is the opposite, then the target vector moved to next generation. The DE algorithm performs 
continuously with mutation, recombination and selection steps until termination criterion is realized. 
 
As we explained in section 2, there are six variables of our problem. 𝑚𝑚 is bounded with [0,2], 𝛽𝛽 is defined as in the 
range of [0,𝜋𝜋] and 𝛼𝛼𝑖𝑖’s can change in the range of [0,𝜋𝜋] for every 𝑖𝑖 ∈ {1,2,3,4}. While searching the best value in 
the DE algorithm, these variables may go out of their bounds during mutation. In order to keep them in their boundaries, 
we use the Periodic Approach which is proposed by Padhye et al. (2015) as a constraint-handling strategy. This strategy 
bounds the constraints with a periodic repetition (𝑝𝑝 =  𝑥𝑥(𝑈𝑈) −  𝑥𝑥(𝐿𝐿)) of the objective function. With equation 𝑦𝑦 =

�
𝑥𝑥(𝑈𝑈) − �𝑥𝑥(𝐿𝐿) − 𝑥𝑥𝐶𝐶� % 𝑝𝑝 ,    𝑖𝑖𝑖𝑖 𝑥𝑥𝐶𝐶 <  𝑥𝑥(𝐿𝐿),
𝑥𝑥(𝐿𝐿) + �𝑥𝑥𝐶𝐶 − 𝑥𝑥(𝑈𝑈)� % 𝑝𝑝 ,    𝑖𝑖𝑖𝑖 𝑥𝑥𝐶𝐶 >  𝑥𝑥(𝑈𝑈) 

 , (where % is used for mode operation) a breached variable is turned into 

boundaries of [𝑥𝑥(𝐿𝐿), 𝑥𝑥(𝑈𝑈)]; and become a new variable noted as 𝑦𝑦. For our problem; 𝑥𝑥 = {𝑚𝑚,𝛽𝛽,𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4}.  
 
There are many parameters that need to be set in DE. In this process, Mallipeddi et al.’s (2011) study on parameter 
settings and mutation strategies was used. We take P as 50. According to Mallipeddi et al. (2011), CR should be taken 
in the range [0.1-0.9] in order to balance efficiency and speed. Thus, we take CR as 0.5. Similarly, we take F as 0.4 
because it is mentioned that F should be taken in the range [0.4-0.9].  
 
We use iteration number (1000 iterations) to terminate our algorithm with a consdition of no improvement in the last 
100 iterations. Hence, if there is a chance to improve the solution, we run the algorithm a bit more. According to our 
stopping criteria; first 1000 iteration are completed without any condition. At every iteration after 1000 iterations, the 

Initialization Mutation Recombination Selection 
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best solution is compared with the previous best solution. If there is no improvement, then the algorithm stops at 
iteration 1100. However there is an improvement, the algorithm runs extra 100 iterations unless there is no further 
improvement. Last, the final best solution is taken as the best-solution found so far.  
 
5. Numerical Study and Results 
 
This section describes the search for the best X-shape warehouse layout where average tour length is minimized. We 
consider a warehouse layout twice as wide as its deep. We assume single deep racking system. We assume that all 
products stored under randomized storage policy because of its simplicity, its more efficient use of storage space and 
popularity in the industry (Petersen, 1999). Therefore, we assume uniform picking. We also locate the single P&D 
point in the middle of the front cross aisle because Roodbergen and Vis (2006) showed that this is the optimal location 
for a single P&D point that minimizes the order-picking tour under randomized storage. 
 
In order to consider the effect of number of picks on average tour length, we use seven pick list sizes (3, 5, 10, 20, 30, 
40 and 50) (Çelik and Süral, 2014). For example; if the pick list size is 30, order picker travels 30 different locations 
in a warehouse starting from the P&D point and ends the travel at the P&D point. So, if there are 𝑚𝑚 number of storage 
locations on warehouse and the picking list size is 𝑛𝑛, ∁(𝑚𝑚,𝑛𝑛) number of different order lists could be created. Because 
of considering every possible order and its tour length will be incredibly time consuming, we statistically determine 
an appropriate number of orders. First, we generate 1000 orders for both small (3) and large (50) pick lists to 

statistically analyze the appropriate sample size. We calculate our sample size using the formula 𝑁𝑁 =  
𝑠𝑠2∙𝑍𝑍∝ 2�

2

(𝑥̅𝑥∙0.01)2
 where 

𝑠𝑠 is the standard deviation, 𝑥̅𝑥 is the sample mean. As a result we are 95% confident with a %1 of error that 1500 orders 
are appropriate for smaller pick lists such as 3,5 and 10, and 250 orders for larger pick lists such as 20, 30, 40 and 50.  
 
The arithmetic average of all orders’ tour length is taken as the fitness value or cost of the designs. As explained in 
previous section, we use ACO algorithm to calculate an order picking tour length and we use DE algorithm to search 
for the best value of design variables to minimize average tour length.  In order to compare the best-found designs, 
we take Design B as a base. The considered Design B in this study has 11 vertical picking aisles, one middle cross 
aisle in the center, its width and heights are 580 and 290 pallet units. Hence, there are 512 storage locations available 
at the lowest level of the racks. We also take the same width and depth for X-shape design.  
 
We run our experiments on a computer running on 4 GB RAM and a 1.70 GHz Intel ® CORE i5 processor. We perform 
three replications. We then select the one with the best fitness value. The average computational time for these 
replications are shown in Table 1. Table 2 shows the results of the best X-shape designs found so far for each pick list. 
This table also shows the average tour length of Design B for the same order set. Figure 5 presents the comparison of 
the best-found X-shape designs and Design B when their warehouse sizes are equal. As seen in the figure, the best-
found X-shape designs provide about 5% less average tour length with a cost of 30% loss in capacity for equivalent 
sizes of 2:1 (width-to-depth ratio) warehouses. The reasons of the loss in space are simply the inserted additional cross 
aisles and angled aisles.  

 
Table 1. Average Running Times 

 
Pick list size 3 5 10 20 30 40 50 

CPU time (hr) 4.6 11.2    24.8 27.9 61.7 90.2 125.5 
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Table 2. The solutions for the best-found X-shape designs and the fitness of Design B 
 

Shape ratio 2:1, Width 580 PU, Length 290 PU 

Pick 
List # Capacity m β α1 α2 α3 α4 

X-shape 
Fitness 

Design B 
Fitness 

3 383 1.56 86.9 110.8 65.3 70.2 128.3 1,012.7 1,082.4 

5 357 1.23 28.3 109.5 85.0 78.5 98.9 1,306.4 1,358.2 

10 369 1.80 152.5 85.4 106.5 94.4 79.2 1,798.7 1,839.3 

20 337 1.08 36.9 78.5 89.0 76.6 81.1 2,405.5 2,521.4 

30 345 1.08 33.5 79.9 87.5 84.8 86.5 2,831.9 2,978.9 

40 346 1.29 35.0 84.4 94.3 100.6 98.2 3,168.2 3,313.2 

50 374 1.86 136.1 88.9 95.8 81.8 93.3 3,475.7 3,558.0 
 

 
 

Figure 5. Comparison of the best-found X-shape design and Design B when the warehouse sizes are equivalent 
 
In order to provide an accurate comparison, the size of X-shape designs are expanded to provide same amount of 
storage locations with an equivalent Design B. While expanding the warehouse sizes, the obtained values in the best 
solution including αis and m are kept fixed, as well as shape ratio. Table 3 summarizes the characteristics of these 
expanded best-found X-shape designs. When these expanded designs are compared with the equivalent Design B, we 
see that shape designs do not provide any savings on travel (see Figure 6). Additionally, they require almost 25% more 
storage area than the equivalent Design B to occupy same number of storage locations. Last, the best-found X-shape 
designs can be seen in Figure 7. 
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Table 3. Features of the expanded best-found X-shape designs 
 

Shape 
Ratio 

Width Length Area Pick List 
Size 

Capacity Average 
Tour Length 

2:1 

620 310 192.2 3 500 1,104.3 

640 330 211.2 5 520 1,464.3 

640 320 204.8 10 509 1,992.7 

650 330 214.5 20 514 2,808.3 

640 330 211.2 30 515 3,356.1 

640 330 211.2 40 507 3,747.1 

640 330 211.2 50 505 4,144.8 

 
 

 
 

Figure 6. Comparison of Expended X-shape and Design B in Same Capacity 
 
 
6. Conclusion 
 
In this study, we study on a completely new non-traditional warehouse design problem. In this problem,  we inserted 
two angled cross aisles in a rectangular shape warehouse. We assume that these angled cross aisles intersect in the 
middle of storage area. Additionally, the picking aisles are also assumed to take any angle. We then search for the best 
designs where there is only one P&D point that allows material flows in and out, which is located on the middle of 
front cross aisle. We also assume that picking from any location has equal chance under randomized storage policy. 
After searching the best designs in warehouses with 2:1 width to shape ratio for different pick list sizes, we see that 
any of the best-found X-shape designs could reduce average order-picking tour length over the equivalent Design B. 
One of the reasons of this result is that the best-found designs require approximately 25% larger storage area than 
Design B due to angled and inserted aisles. Because of the limitations of this study with uniform picking, 2:1 shape 
ratio and single P&D point, further investigation can be performed to look for the existence of better designs in this 
new problem.   
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Figure 7. The best-found X-shape design representations when the shape-ratio is 2:1 
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