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Abstract 

The multi-objective assignment problem is basically the N men –N tasks problem, where a single task has to be 
assigned to an individual with a view of optimizing the outcomes. A common challenge is to address the conflicting 
objectives which produce Pareto–optimal solutions. The main feature of the work is- normalizing all the criteria into 
a single scale regardless of their measurement units and their demand of minimum or maximum, which reliefs us from 
careful attention in quantifying the quality criteria. The methodology also included the decision maker’s preferences 
regarding the objectives. While solving the problem through a genetic algorithm, a new encoding scheme is used 
together with a partially matched crossover (PMX). The working principle of the proposed algorithm is illustrated 
with a numerical example and its effectiveness has been compared with some well-established methodologies. It is 
found that the proposed algorithm provides a better solution with minimal computational effort.   

Keywords 
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1. Introduction

The assignment problem (AP) is one of the fundamental topics in combinatorial optimization in the branch of operation 
research. It has significant use in production planning, transportation, telecommunication, VLSI design, economics 
etc. (Pramanik and Biswas 2012). It deals with the allocation of the various resources to the various activities so that 
an optimal assignment can be made in the best possible way.  

The linear assignment problem manifests the scenario where assignees are being assigned to perform tasks in one to 
one basis (Sahu and Thapadar 2017). It addresses the question of how to set assignee to tasks in an injective way so 
that the assignment cost (or profit) is minimized (or maximized). In this perspective, an assignment problem is viewed 
as a balanced transportation problem in which all supplies and demands equal ‘1’ for identical numbers of rows and 
columns. Transportation simplex is not applied here because of a high degree of degeneracy (Lin 2009). 

Kuhn (1995) proposed an algorithm for the linear assignment problem known as the Hungarian method. It was 
primarily designed for hand computation (Taha 2006). It has third order run time requirement that is very tedious with 
a large number of the task (Bertsekas 1981). Solving multiple objectives optimization problem is not suitable with 
such an approach. 

In the real arena, management has many objectives for tasks allocation to workers. We often come in close contact 
with an assignment problem, where, cost and time are jointly co-related (Pramanik and Biswas 2012). Multi-objective 
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assignment model usually considers time, cost, safety, quality etc. simultaneously. Single objective optimization is 
easy to solve but the multi-objective problem is complex because of the conflicting nature of the objectives (Oliveira 
and Saramago 2010). These problems give rise to a set of trade-off among optimal solutions, popularly known as 
Pareto-optimal solutions. For the multi-objective assignment problem (MOAP), all the criteria are not equally 
important. Generally, decision maker imparts priority ranking among the objectives, e.g. time is less important than 
quality. By incorporating the decision maker’s preferences into the problem, the problem becomes hard to solve (Acar 
and Aplak 2010).   
 
Bao et al. (2007) use 0-1 programming to translate a MOAP into a linear programming problem. They take the 
reciprocal of quantified quality in the normalized quality, but it doesn’t translate the quality criteria into a similar scale 
like cost and time criteria when there is no quality point ‘1’. Moreover, there may be multiple local optimum solutions. 
Linear programming has not the ability to avoid being trapped in local optimal solution as it starts searching from a 
single point and moves to nearby better solution point. This may lead to trapped in local optimal solution (Ishizuka 
and Matsuo, 2002).  
 
Pramanik and Biswas (2012) solved the MOAP with Generalized Trapezoidal Fuzzy Numbers. It suffers the drawback 
from imprecise costs, time and effectiveness instead of having precise information. In addition, it uses linear 
programming to find the solution. 
 
Tsai et al. (1999) proposed a new methodology to solve the problem of multi-objective fuzzy deployment of 
manpower. They transform the multi-objective problem into a fuzzy linear programming. In this methodology, a 
careful attention must be paid to determine the weights among the resources. The attention of the management may 
skew to an erroneous assignment for an inappropriate set of weights. Also, this approach requires expensive 
calculation time.  
 
Genetic Algorithm (GA) is successfully used to solve computer science and operations research problems.  GA is a 
stochastic search and optimization technique inspired by the process of natural selection that belongs to the larger 
class of evolutionary algorithms (EA) (Goldberg 1989). GA is commonly used to generate high-quality solutions for 
optimization and search problems by relying on bio-inspired operators such as mutation, crossover, and selection 
(Boussaid et al. 2013). It is applicable for both constrained and unconstrained optimization problems (Yeniay, 2005). 
Moreover, GA has a better ability to avoid being trapped in local optimal solution as opposed to the linear 
programming (Melanie, 1999). 
 
Tailor and Dhodiya (2016) presented a solution procedure of MOAP using a genetic algorithm based hybrid approach. 
They convert the MOAP into ‘combine objective assignment problem’ and then the solution is searched by genetic 
algorithm. This methodology also requires allocating equivalent weight to cost, time and quality like the work of Tsai 
et al. (1999). 
 
The purpose of this research is to solve MOAP using a comparatively easy and effective algorithm based on GA 
principles, which will solve the MOAP incorporating the decision maker’s preferences. 
 
2. The Proposed Model  
 
The representation of notation and the mathematical model is done as follows. 
 
2.1 Notation 
 
Subscripts 

i Worker number 
j Task number 
n Number of total worker/ task 
r Chromosome’s number 
m Number of total solutions/ chromosomes 
c Cost 
t Time  
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q Quality  
 
Parameters and matrixes 

Mc The Cost matrix 
Mt The Time matrix 
Mq The Quality matrix 
Cij The element of the ith row and jth column in the cost matrix 
Tij The element of the ith row and jth column in the time matrix 
Qij The element of the ith row and jth column in the quality matrix 
b Gene 
L Number of total genes in a chromosome 
Cmax Maximum cost 
Tmax Maximum time 
Qmax Maximum quality 
Nc Normalized cost matrix 
Nt Normalized time matrix  
Nq Normalized quality matrix 
Cnij The element of the ith row and jth column in the normalize cost matrix 
Tnij The element of the ith row and jth column in the normalize time matrix 
Qnij The element of the ith row and jth column in the normalize quality 

matrix 
Wc Weightage of cost 
Wt Weightage of time 
Wq Weightage of quality 
Pm Probability of mutation 

 
2.2 Mathematical model 
 
The MOAP deals with cost, time, quality etc. (Deb 2001). The objectives of an assignment problem are to minimize 
both operating cost and operating time, and to maximize quality simultaneously (Mota et al. 2015). Suppose we have 
to assign n workers to n tasks in such a way that the overall operation cost, labour-time, and quality level are optimized.  
 
It is noted that the units for measuring time, cost and quality are different. Generally, the quality criteria are expressed 
as “good”, “fair”, and “poor”. Therefore, it is necessary to quantify this quality criterion in terms of numerical value 
(Bao et al. 2007). We assign 1 for “good”, 3 for “fair” and 5 for “poor” or researcher can express quality into more 
level in any interval. This assignment imparts the highest value to the lowest quality and the lowest value to the highest 
quality (Tsai et al. 1999). It converts the requirement of maximum quality in MOAP into a minimum value of quality. 
Now, the demand for the value of all the criteria viz. cost, time and quality is minimal. The assignment cost, time and 
quality are given in table 1. 
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Table 1. A MOAP  
 

 
Criteria 

 
Worker, 

i 

Task, j 

1 2 .. n 

Cost, 
 Cij 

1 C11 C12 .. C1n 
2 C21 C22 .. C2n 
.. .. .. .. .. 
N Cn1 Cn2 .. Cnn 

Time, 
 Tij 

1 T11 T12 .. T1n 
2 T21 T22 .. T2n 
.. .. .. .. .. 
N Tn1 Tn2 .. Tnn 

Quality, 
 Qij 

1 Q11 Q12 .. Q1n 
2 Q21 Q22 .. Q2n 
.. .. .. .. .. 
N Qn1 Qn2 .. Qnn 

 
The problem can be stated as,  

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝐶𝐶 𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1   (1) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1   (2) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1   (3) 

   
Where 

 𝑋𝑋𝑖𝑖𝑖𝑖 = �1 𝑖𝑖𝑖𝑖 𝑖𝑖𝑡𝑡ℎ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑗𝑗𝑡𝑡ℎ  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
0                                            𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (4) 

 
  ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1;  𝑗𝑗 = 1, 2, … . . ,𝑛𝑛 (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑗𝑗𝑡𝑡ℎ  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑛𝑛

𝑖𝑖=1   (5) 
 
 

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1;   𝑖𝑖 = 1, 2, … . . ,𝑛𝑛𝑛𝑛
𝑗𝑗=1  (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑡𝑡ℎ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)  (6) 

   
3. A Genetic algorithm for the MOAP 
 
In this sub-section, we present the basis and the details of the proposed genetic algorithm. 
 
3.1 Basis of the formulation 
 
The values of one criterion (e.g. cost) may be very high and for another criterion (e.g. time) may be very low. In the 
case of minimization, the criteria having high values play an important role by ignoring the criteria having a low value 
(Mota et al. 2015). So it requires the conversion of all the criteria into a similar scale. The process of normalization 
translate all the criteria into a similar scale. For the purpose of normalization, first, maximum operation cost and 
maximum operation time and maximum operation quality are determined. To find the normalized matrix, all the cost, 
time and quality are divided by the maximum operation cost, maximum operation time, and maximum operation 
quality respectively. 
 
Maximum cost,   

 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  =  𝑀𝑀𝑀𝑀𝑀𝑀 (𝐶𝐶𝑖𝑖𝑖𝑖) (7) 
Maximum time, 

 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  =  𝑀𝑀𝑀𝑀𝑀𝑀 (𝑇𝑇𝑖𝑖𝑖𝑖) (8) 
Maximum quality, 

 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚  =  𝑀𝑀𝑀𝑀𝑀𝑀 (𝑄𝑄𝑖𝑖𝑖𝑖) (9) 
Normalized cost matrix,  

 𝑁𝑁𝑐𝑐 = 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑐𝑐/𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 =  [𝐶𝐶𝑖𝑖𝑖𝑖/𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚] (10) 
Normalized time matrix, 
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 𝑁𝑁𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑡𝑡/𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  =  [𝑇𝑇𝑖𝑖𝑖𝑖/𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚] (11) 
Normalized quality matrix,  

 𝑁𝑁𝑞𝑞 = 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑞𝑞/𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 =  [𝑄𝑄𝑖𝑖𝑖𝑖/𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚] (12) 
 
3.2 The details of the proposed algorithm  
 
The basic structure of the proposed GA algorithm to solve MOAP is as follows: 
 
Step 1.  Create an initial population of m chromosomes where 𝑚𝑚

2
 is an even number (generation 0).  

Step 2.  Evaluate the fitness of each chromosome.  
Step 3. Select parents from the current population via proportional selection (i.e. the selection probability is 

proportional to the fitness). The number of total parents is 𝑚𝑚
2

. 
Step 4.  Choose at random a pair of parents for mating and apply partially mapped crossover (PMX) to create two 

offspring. A parent is chosen for mating for one time. 
Step 5.  Apply mutation operator to offsprings, and insert the resulting offsprings in the new population with their 

parents. 
Step 6.  Repeat steps 5 and 6 until all parents are selected and mated. (i.e. offspring are created).  
Step 7.  Find the best chromosome from all the parents and child of the new population. Replace the ‘best chromosome 

so far’ by the best chromosome of the new population when the later one is superior. 
Step 8.  Replace the old population of chromosomes by the new one. 
Step 9.  Go back to step 2 if the last generation does not provide a better solution for several iterations. Otherwise, the 

final solution is the ‘best chromosome so far’ created during the search. 
 
In the forthcoming section, we will describe the details of the implementation of GA in solving MOAP. 
 
3.2.1 Representation of solution 
 
The representation of the solution structure of the MOAP is discussed here. Symbolic ordered gene (i.e. the value of 
two alleles can’t be same (Triantaphyllou et al. 1998)) strings of length n (total number of tasks) are used to represent 
solution (chromosome), henceforth called tasks chromosome. The chromosome has one allele for each task. The 
position of an allele in task chromosome represent the task number while the allele value is the worker number who 
is assigned to that task (Sehrawat and Singh 2011). For example, let a string consists of genes (4, 3, 1, 5, 2). The allele 
at the first locus of the string signifies that the worker number 4 is assigned to task number 1, worker number 3 is 
assigned to task number 2, and so on. 
 
3.2.2 Initial population  
 
The encoded solution is represented as a chromosome. The initial set of solutions i.e. the population size of m is 
generated randomly where 𝑚𝑚

2
 is an even number, allowing the entire range of possible solutions (the search space). 

For a particular solution i.e. chromosome, the genes, 
 

 
𝑏𝑏𝑗𝑗 = 𝑖𝑖   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑡𝑡ℎ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑗𝑗𝑡𝑡ℎ  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑓𝑓𝑓𝑓𝑓𝑓 

  𝑗𝑗 = 1, 2, … . . ,𝑛𝑛 
 

(13) 

And the chromosome r, 
 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑏𝑏𝑗𝑗      𝑓𝑓𝑓𝑓𝑓𝑓  𝑟𝑟 = 1, 2, … . . ,𝑚𝑚  𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 = 1, 2, … . . ,𝑛𝑛 (14) 

 
3.2.3 Fitness function  
 
The fitness function works as an objective function which is needed to be maximized. In this study, the function Fr is 
used to form fitness functions for chromosome number r. First, the total normalized cost, the total normalized time, 
and the total normalized quality are determined. It is often given different priority on cost, time and quality. The 
Fitness of a   chromosome depends on this priority (weight). The Wc, Wt  and Wq are weights of the cost, time, and 
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quality respectively. Since the MOAP is a minimization problem, the high fitness value is associated with minimized 
cost, minimized time, and minimized quality value (as the highest quality corresponds to the lowest value). It is to 
make the fitness choice criteria maximum, thus the inverse of sum product of a priority and corresponding total 
normalized values are taken in the equation (Mota et al. 2015). 
 
For a particular chromosome i.e. solution, 
 
The total normalized cost,  

 𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐 = ∑ 𝐶𝐶𝐶𝐶  𝑏𝑏𝑗𝑗   𝑗𝑗
𝑛𝑛
𝑗𝑗=1     (15) 

The total normalized time,  
 𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡 = ∑ 𝑇𝑇𝑇𝑇  𝑏𝑏𝑗𝑗   𝑗𝑗

𝑛𝑛
𝑗𝑗=1     (16) 

The total normalized quality, 
 𝑇𝑇𝑇𝑇𝑇𝑇 𝑞𝑞 = ∑ 𝑄𝑄𝑄𝑄  𝑏𝑏𝑗𝑗   𝑗𝑗

𝑛𝑛
𝑗𝑗=1    (17) 

The fitness of chromosome,  
 𝐹𝐹𝑟𝑟 = 1/ (𝑊𝑊𝑐𝑐  ∗  𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐 +  𝑊𝑊𝑡𝑡  ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡  + 𝑊𝑊𝑞𝑞  ∗  𝑇𝑇𝑇𝑇𝑇𝑇𝑞𝑞)                                                    (18) 

 
3.2.4 Reproduction 
 
In the present implementation, the proportional selection (i.e. the selection probability is proportional to the fitness) 
is used (Uddin and Shanker 2002). The expected number of chromosomes going from the parent generation to mating 
pool depends on the individual fitness values (Blickle and Thiele 1995). The probability of selection for chromosome 
r is 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟 =
𝐹𝐹𝑟𝑟

∑ 𝐹𝐹𝑟𝑟𝑚𝑚
𝑟𝑟=1

 (19) 

 
3.2.5 Crossover 
 
Every chromosome is an ordered list of the workers, so the direct swap is not possible. Partially Matched Crossover 
(PMX) and cycle crossover (CX) are widely used for the crossover of ordered chromosomes (Razali and Geraghty 
2011). PMX and CX are not really competitive with the order-preserving crossover operators (Soni and Kumar 2014).  
Partially Matched Crossover (PMX) which was initially developed for tackling the “Travelling Salesman Problem”, 
is chosen as the crossover operator in this model. The crossover in the proposed methodology is explained below.  
 
Each individual in the mating pool has the same chance of being parent independent of its fitness. Two parent 
chromosomes from the mating pool are chosen randomly. Crossover occurs between these two parents. The locus of 
the cross-over points is generated randomly. For example, it is to crossover between, 
chrm1 = (1  8  2  4  7  6  5  3) and  
chrm2 = (2  7  5  3  1  6  8  4).  
 
Two random number is generated between 1 and L (L=7 in this case). Let it ‘3’ and ‘5’. The locus of the crossover 
point is shown by ‘dot’ before position ‘3’ and after position ‘5’. 
chrm1 = (1   8 .   2    4   7 . 6   5   3) 
chrm2 = (2   7 .   5    3   1 . 6   8   4) 
 
Now the portion between the selected crossover points is swapped and the rest of the values are changed according to 
the PMX rule (Umbarkar and Sheth, 2015). After exchanging the information, the two offspring are, 
chrm1’ = (7   8 .  5    3   1 .   6   2   4) 
chrm2’ = (5   1 .  2    4   7 .   6   8   3)  
 
The resulting two chromosomes, called the offspring, added to the population with their parents. The offspring cannot 
be chosen for crossover until the next generation. The process is repeated until the mating pool is not empty, where a 
parent in the mating pool take part in crossover for only one time. 
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3.2.6 Mutation 
 
This mutation operator is the closest in philosophy to the biological mutation operator because it only slightly modifies 
the original chromosome (Potvin 1996). In this accomplishment, we have done the two alleles swapping for each 
chromosome, in offspring, with the probability of mutation, pm. For illustration, let us consider the chromosome, from 
the previous example, 
chrm1’= (7   8     5    3   1   6   2   4)  
Suppose the locus chosen for mutation is 2 and 5. Then, after mutation, the new chromosome (offspring) will be, 
chrm1’’= (7   1     5    3   8   6   2   4) 
 
3.2.7 Termination  
 
When there is no improvement of the highest fitness value attained so far, in successive five generations, it stops 
creating a new generation. And the chromosome having the highest fitness in all the generations is taken as a solution 
of the MOAP. 
 
3.2.8 Extracting the values of decision variables from the best chromosome 
 
Chromosomes i.e. solution is made of genes, like 𝑟𝑟𝑡𝑡ℎ chromosome, 

  𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑏𝑏𝑗𝑗    𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1, 2, … . . ,𝑛𝑛     (ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑗𝑗  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑗𝑗𝑡𝑡ℎ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)    (20) 
 
Now, we will set the values of decision variables according to the chromosome, as follows. 
For 𝑖𝑖 = 1, 2, … . . ,𝑛𝑛  and  𝑗𝑗 = 1, 2, … . . ,𝑛𝑛            

 

      𝑋𝑋𝑖𝑖𝑖𝑖 = � 1            𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =  𝑏𝑏𝑗𝑗     
 0            𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     

 (21) 

 
4. Numerical illustration and result analysis 
 
In the present work, the genetic algorithm was coded in ANSI C programming language using simple array data 
structure and ran on a PC (core i3, Intel processor of 2.2GHz). Here, we considered an example of 6 workers and 6 
tasks as in Tsai et al. (1999) as a numerical example where all the criteria needed to be minimized (Table 2). 

 
Table 2. A numerical example of a MOAP 

 
 

Criteria 
 

Worker, i 
Task, j 

1 2 3 4 5 6 

Cost, 
 Cij 

1 6 3 5 8 10 6 
2 6 4 6 5 9 8 
3 11 7 4 8 3 2 
4 9 10 8 6 10 4 
5 4 6 7 9 8 7 
6 3 5 11 10 12 8 

Time, 
 Tij 

1 4 20 9 3 8 9 
2 6 18 8 7 17 8 
3 2 8 20 7 15 7 
4 12 13 14 6 9 10 
5 9 8 7 14 5 9 
6 17 13 3 4 13 7 

Quality, 
 Qij 

1 1 3 1 1 1 5 
2 3 5 3 5 7 5 
3 1 7 5 3 5 7 
4 5 9 3 5 7 3 
5 3 9 7 5 3 3 
6 3 3 5 7 5 7 

1158



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

 
Using the current approach, with the equal priority of cost, time and quality the solution is following which 
corresponds to the total cost of 42 units, the total time of 41 units and the total quality of 14 units. Some parameters 
of this solution have been shown in table 3. 
 

 𝑥𝑥14 = 𝑥𝑥23 = 𝑥𝑥31 = 𝑥𝑥46 = 𝑥𝑥55 = 𝑥𝑥62 = 1 (22) 
 

Table 3. Various parameter value in the solution 
 

Trial  No. 
Population 

size, 
m 

CPU Time to 
get the best 

solution 
(second) 

No. of iteration 
required to get the 

best solution 

The best fitness value 
attained so far 

1 24 0.016 17 0.0140735 
2 40 0.016 22 0.0140735 
3 60 0.016 15 0.0140735 
4 100 0.016 4 0.0140735 
5 200 0.016 7 0.0140735 
6 400 0.016 3 0.0140735 

 
Furthermore, the convergence of ‘best fitness value so far’ and ‘average fitness value’ has been illustrated in figure 1. 
Where we get the optimum result at the generation number 17 for the population size of 24. 

 

 
 

Figure 1. Convergence to the global maximum fitness for population size 24 
 

5. Comparison of the present work 
 
To further justify the proposed approach, the results of the developed methodology has been compared with the 
experimental result produced by the approach of (Bao et al., 2007) and the multi-objective fuzzy deployment 
methodology developed by (Tsai et al., 1999) as shown in Figure 2. Additionally, the improvement by proposed 
methodology relative to Bao et al. and Tsai et al. are shown in Figure 3.   
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Figure 2. Results in different methodologies 
 

The proposed methodology results in 42 units operation cost, 41 units operation time and 14 units quality. Which 
imply the amount of 18% improvement in time and 13% improvement in quality with an expense of 17% cost 
deterioration. Consequently, the result of the proposed methodology is better since the priorities of all the criteria is 
the same. 

 

 
 

Figure 3. Improvement by proposed methodology relative to Bao et al. and Tsai et al.   
 

The approach of Bao et al. cannot normalize quality criterion in an interval of [0,1]  when there is no assignment 
having the quality weight of ‘1’. In this case, the reciprocal of quality distributes as normalized quality in an interval 
[0,1) while the other normalized criteria are distributed in an interval of [0,1]. However, all the criteria are distributed 
into a normalized value in an interval of [0,1] in the present work. 
 
6. Conclusion 
 
In the present paper, a methodology to solve the multi-objective assignment problem has been proposed and solved 
by a genetic algorithm. It is found that the algorithm is very effective to find the global optimal solution quickly. A 
great feature of this work is its simple calculation procedure compared to the other methods. As a whole, the proposed 
methodology doesn’t require careful attention to the determinations of the weight among the resources. Moreover, it 
incorporates the priority of the resources in the decision making process. 
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