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Abstract 
The system studied consists of two parallel factories subject to production rate-dependent failure rates. 
The factories are subject to random non-operational periods considered herein as governed by a 
failure/repair process, and respond to a single product type demand. The main objective here is to propose 
production policies that will minimize the total cost (inventory and backlog costs), over an infinite 
planning horizon. The failure rate of the first factory depends on its production rate, while that of the 
second factory is constant. The proposed model is based on a non-homogeneous Markov decision 
process, and the stochastic dynamic programming approach is used to obtain optimality conditions. 
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1. Introduction
      Due to the constant search for increased productivity and a better service to clients, the number of scientific 
publications in the field of deteriorating manufacturing systems has been growing steadily. For example, Hu and 
Xiang (1995); Dehayem et al. (2011) and Kazaz and Sloan (2013) studied semi-Markov processes, where the 
assumption is that the system deteriorates with age or number of failures. While this is a reasonable assumption, 
which in some cases provides simple and appealing mathematical solutions, the authors did not address the question 
of what happens if the machine is used to its maximum production capacity for a long period. The problem becomes 
more realistic if the failure rate depends on the production rate. The most important accomplishments of the research 
of Hu et al. (1994) was the investigation of the necessary and sufficient conditions for the optimality of the hedging 
point policy for a single machine, single part-type problem, when the failure rate of the machine is a function of the 
production rate. They showed that hedging point policies are only optimal under linear failure rate functions. Based 
on their discussion, numerical results in the general case suggest that as the inventory approaches a hedging level, it 
may be beneficial to decrease productivity in order to realize gains in system reliability. This conjecture was 
confirmed by the numerical results reported in Martinelli (2007; 2010), and Nourelfath and Yalaoui (2012). 
Kouedeu et al. (2014) extended these preceding works to manufacturing systems consisting of two machines subject 
to a non-homogeneous Markov failure/repair process with production rate-dependent failure rates. The authors 
showed that the hedging point policies are optimal within a four-threshold feedback policy, and that the reliability of 
the machines is also enhanced. They also studied the case of manufacturing systems involving multiple failure rates. 
However, their results were limited to manufacturing systems with a constant demand rate and exponential failures 
and repair time distributions. From a practical point of view, random demand and a non-Markovian process are more 
suited to model manufacturing systems. In this case, the analytical models combined with simulation can be used to 
determine the effects of the factors considered on the incurred cost and to obtain a near-optimal control policy. For 
the application of such a method to a homogeneous non-Markovian process, we refer our readers to Dhouib et al. 
(2010), Gharbi et al. (2011), Rivera-Gomez et al. (2013), and Bouslah et al. (2014). 

1382

mailto:annie.kouedeu.1@ens.etsmtl.ca
mailto:annie.kouedeu.1@ens.etsmtl.ca
mailto:Jean-Pierre.Kenne@etsmtl.ca
mailto:Jean-Pierre.Kenne@etsmtl.ca
mailto:Victor.Songmene@etsmtl.ca
mailto:Victor.Songmene@etsmtl.ca


Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

       Generally, remanufacturing has been used within the sole domain of the automotive and aeronautical sectors, 
with Rolls-Royce, MTU (Motoren- und Turbinen-Union) aero Engines, General Electric, Caterpillar and Cummins 
Engine being but a few prominent examples of remanufacturers (Jian et al. (2010)). For example, Hashemi (2014) 
studied an integrated system of manufacturing and remanufacturing using a capacitated facility in the aerospace 
industry, where products are returned after certain flight hours or cycles for overhaul. The authors developed a 
mixed integer linear programming model developed to maximize profit considering manufacturing, remanufacturing 
set-up, refurbishing, and inventory carrying costs. In recent decades, however, remanufacturing has spread to other 
sectors as in Sundin et al. (2012) where the authors explored how manufacturers can develop automatic end-of-life 
(EoL) processes facilitated by product design methods, e.g., design for disassembly, recycling and remanufacturing. 
They illustrated such a product and EoL process development while maintaining economic and environmental 
values, with a focus on toner cartridges and liquid crystal displays (LCDs). 
     This paper investigates a deteriorating hybrid manufacturing/remanufacturing system consisting of two parallel 
factories (manufacturing factory and remanufacturing factory) subject to production rate-dependent failure rates 
(non-homogeneous Markov process). The stochastic nature of the system is attributable to factories that are subject 
to random non-operational periods considered herein as governed by a failure/repair process. The factories produce 
one type of product, namely, laser printer cartridges. The objective is to find the production rates of the different 
factories so as to minimize a long-term average expected cost, including inventory and backlog costs. To solve the 
optimization problem, we propose a stochastic programming formulation of the problem and obtain the optimal 
production policies numerically. Control policy parameters are obtained by combining analytical modelling, 
simulation experiments and response surface methodology. To the best of our knowledge, no other research has 
studied this problem governed by non-Markovian processes. 
    The remainder of this paper is organized as follows. After the industrial context is developed in Section 2, Section 
3 presents the problem formulation. Section 4 deals with the optimality conditions and results analysis. The paper is 
concluded in Section 5. 
 

2. Industrial context 
    The formulation and the approaches developed in this paper have been tested in the case of a printer cartridge 
company in France operating throughout Europe. Its activity is based on the combined manufacturing of new 
cartridges and the remanufacturing of used ones. For the sake of confidentiality, this company will be referred herein 
as the Manufacturing/Remanufacturing Company (MRC). Although, non-homogeneous Markov processes have 
been used in many operational management problems, their application to the printer cartridge industry is still quite 
rare. This work is intended to make a contribution in that regard.  
    MRC is the European leader in compatible consumables for inkjet, laser, fax and impact printing, offering 
remanufactured and new patent-compliant cartridges. It invests and innovates to offer new solutions that meet 
increasingly significant economic and ecological requirements. MRC is active in about 20 countries, has about 25 
industrial and commercial sites, and a yearly turnover of more than €200 million. It is headquartered in France and 
employs close to 2000 people world-wide. It operates in several production facilities for new or remanufactured 
inkjet or laser cartridges in Eastern Europe and North Africa. We limit ourselves to the production chain, and so 
issues concerning administration, control, quality management, etc., are not addressed in this study.  
    For the considered control problem, the manufacturing and the remanufacturing factories produce the laser printer 
cartridges. At the end of their usage, products are collected for possible reuse. However, the manufacturing factory 
makes new products from raw materials, while the remanufacturing factory produces “like new” parts from used 
products returned from the market. It is interesting to note that the returned products come from the MRC’s markets 
as well as from markets of competitors such as Armor, HP, Canon, Dell, Epson, Brother, Lexmark, Samsung, Sharp, 
Toshiba, Xerox, etc. Thus, we assume that the returns like raw materials are not starved. The factories are subject to 
random non-operational periods considered herein as governed by a failure/repair process. Finished parts (both 
manufactured and remanufactured) are stored in the serviceable inventory.  
    The manufacturing factory is the main factory characterized by a higher production rate. Its failure rate depends 
on its production rate. This means that when the manufacturing factory works at a faster rate, it is more likely to fail 
and be unavailable. In that case, we cannot use it to its maximum production rate all the time. Thus, we introduce 
another production rate called the economical production rate. The failure rate of remanufacturing factory and the 
repair rates of both factories are assumed constant. The maximum production rates of the factories and the 
economical production rate are known. The demand process for the finished products process is deterministic. 
Backorders of unsatisfied demands are permitted. 
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3. Problem formulation 
     The manufacturing/remanufacturing system illustrated in Figure 1 consists of two parallel factories denoted as 

1M  (manufacturing factory) and 
2M  (remanufacturing factory) capable of producing one product type. These 

factories are subject to random failures and repairs that can generate stock-outs. 
1M  is called the main factory given 

that its production rate is higher than that of 
2M . When 

1M  works at a faster rate, it is more likely to fail. The 

system availability can be described at each time t  by a stochastic process ( ),  1, 2i t iξ =  taking values in 

{ }1,2iB =  with ( ) 1i tξ = , if the factory is operational at time t , and ( ) 2i tξ = , otherwise. The system 

dynamics can be described by the stochastic process ( ) { }1, 2,3, 4t Bξ ∈ = . The transition probabilities are given 

by:  
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( ) ( )
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Figure 1. Manufacturing system considered 
      
For failures/repairs processes described by exponential time distributions and a constant demand rate, the process is 
modeled by a continuous time Markov chain with a transition rate matrix given by Q αβλ= . It is a 4 4×  

irreducible stochastic matrix. 
Let 1( )u t  and 2 ( )u t  denote the production rates of 1M  and 2M , respectively. The production rates are 
nonnegative. The stock of Figure 1 is the inventory of finished products (serviceable inventory), and it is defined by 
the variable ( )x t . Thus, the continuous system dynamics evolves according to the following differential equation: 

1 2 0
( ) ( ) ( ) ,     (0)dx t u t u t d x x

dt
= + − =                           (2) 
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where 0x
 
and d

 
are the given initial stock level and demand rate, respectively. 

The set of the feasible control policies Α , including 1( )u ⋅  and 2 ( )u ⋅ , is given by:  

( ) ( )( ) ( ) ( ){ }2
1 2 1 1max 2 2max, , 0 ,0u u u u u uΑ = ⋅ ⋅ ∈ℜ ≤ ⋅ ≤ ≤ ⋅ ≤                        (3)

 

where 1( )u ⋅  and 2 ( )u ⋅  are known as control variables, and constitute the control policies of the problem under 

study. The maximal productivities of the main factory and the second factory are denoted by 1maxu  and 2maxu , 
respectively. 
Let ( )g x  be the cost rate defined as follows:  

( )g x c x c x+ + − −= +                               (4) 

where constants c+  and c−  ($ per product per unit of time) are used to penalize inventory and backlog, 
respectively. ( )max 0,x x+ =  and ( )max , 0x x− = − . The problem objective lies in determining the optimal 
control policy so as to minimize the expected discounted cost given by: 

( ) ( ) ( ){ }01 2 0
, , , ( , ) 0 , 0tJ x u u E e g x dt x xρα α ξ α

∞ −= = =∫                        (5) 

where ρ  is the discount rate and E  is the mathematical expectation. The value function ( )ν ⋅  of such a problem is 
given by: 

( ) ( )
1 2

1 2( ( ), ( )) ( )
,, inf , , ,  

u u
v x J x u u B

α
α α α

⋅ ⋅ ∈Α
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(6) 

where Α  is the set of the feasible control policies given by: 

( ) ( )( ) ( ) ( ){ }2
1 2 1 1max 2 2max, , 0 ,0u u u u u uΑ = ⋅ ⋅ ∈ℜ ≤ ⋅ ≤ ≤ ⋅ ≤ . 

 
4. Optimality conditions and results analysis 

Assuming that ( ),v xα  is differentiable, the optimality conditions are described by: 

1 2
1 2( , ) ( )

( , )( , ) min ( , ) ( , ) ( )
u u B

v xv x g x v x u u d xαβα β

αρ α α λ β
∈Α ∈

 
 
  

∂= + + + −
∂∑

                   

(7) 

The expression of equation (7) is commonly called a Hamilton-Jacobi-Bellman (HJB) equation. Further details 
about how HJB equations are obtained can be consulted in Gershwin (2002). 
 
The objective of this paper is not to solve equation (7) analytically, but rather, to experimentally determine the 
optimal parameters of the hedging point policy, which give the best approximation of the value function ( ),v xα . 
 

+c  -c  h  U  1maxu  2maxu  d  1MTBF  2MTBF  3MTBF  1MTTR  2MTTR  ρ  

4 100 0.025 0.27 0.30 0.26 0.28 80 100 60 1 1 0.09 
Table 1. Numerical data of the considered system 

 
For the date presented in table and for infinite supply of returns, the production rates of the 
manufacturing/remanufacturing system are illustrated in Figures  2, 3 and 4.  
The results of Figures. 2 and 3 show that the optimal production control policy of 1M  consists of one of the 
following three rules: 

1385



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

Set the production rate of 1M  to its maximal value when the current stock level is under the first threshold 

value 1z  (both factories are operational) or 3z  (only 1M  is operational); 

Reduce the production rate of 1M  to its economic value (U ) when the current stock level approaches the 

second threshold value 2z  (Figure. 2) or 4z  (Figure. 3); 

Set the production rate of 1M  to zero when the current stock level is greater than the second threshold value. 

 

 

 
Figure 2. Production rate of 1M  when both factories are operational 
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Figure 3. Production rate of 1M  when 2M  is non-operational 

 
The optimal production control policy of 2M  (Figure. 4) consists of one of the two following rules: 

(1) Set the production rate of 2M  to its maximal value when the current stock level is under the threshold 

value 2z ; 

Set the production rate of 2M  to zero when the current stock level is greater than the threshold value 2z . 
This gives rise to the following control policies: 
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The implementation of the control policies is illustrated in Figure. 5. This illustration shows the actions that should 
be taken by the manager when both factories are operational (mode 1), and when the second factory is non-
operational (mode 2). At mode 3, 1M  is non-operational and 2M  cannot satisfy the customer demand alone. Both 
factories are under repair at mode 4. 
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Figure 4. Production rate of 2M  when both factories are operational 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Model implementation diagram 
5. Conclusion 

In this paper, we showed that the hedging point policies of a non-homogeneous Markov failure/repair 
manufacturing/remanufacturing system (in which the failure rate of the factory depends on its production rate) are 
optimal among feedback policies, and that the reliability of the factories is enhanced. Applying stochastic optimal 
control theory, we have developed the optimality conditions described by Hamilton-Jacobi-Bellman (HJB) 
equations; that we solved numerically with Kushner's approach. The results showed that optimal policies depend on 
system degradation in a closed loop supply chain context. The model presented in this paper could be extended to 
the case of more complex systems (subject to random perturbations described by general distributions) using 
simulation and experimental design. 
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