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Abstract 

Biomass co-firing in coal power plants is an immediate and practical approach to reduce coal usage and pollutant 
emissions because only minor modifications are required. With direct co-firing, biomass can be used directly as 
secondary fuel in power plants to partially displace coal. Although it requires minimal investments, it can lead to 
equipment corrosion from unconventional fuel properties of the biomass-coal blend. With indirect co-firing, the risk 
of damage is minimized by separately processing biomass. The solid biochar by-product can be used as soil fertilizer 
to achieve further reductions in GHG emissions through carbon sequestration. However, as this calls for a separate 
biomass energy conversion plant, its investment cost is higher. Moreover, this system faces uncertainties from the 
inherent variability in biomass quality. This must be accounted for because mixing fuels results in the blending of 
their properties. In this work, a robust optimization model is proposed to design cost and environmentally effective 
biomass co-firing networks that decides on appropriate co-firing configurations and fuel blends. A case study is solved 
to demonstrate validity. Results of Monte Carlo simulation show that the robust optimal network configuration is 
relatively immune to uncertainty realizations as compared with the optimum identified with deterministic models. 
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1. Introduction

The means of producing energy using fossil fuels (e.g. coal) are unsustainable. They have been tied to health and 
environmental issues, including climate change, caused by hazardous greenhouse gas (GHG) emissions (Ramos et al., 
2018), which can lead to disastrous environmental events. Hence, policymakers encourage minimizing the causes of 
global warming and climate change (Dundar et al. 2016), such as by using biomass as a renewable energy source, 
which is considered to be carbon neutral (U.S. EPA 2018). Co-firing biomass with coal in existing power plants is an 
immediate and practical approach to reduce coal usage and pollutant emissions with only relatively minor 
modifications (Madanayake et al. 2017). The management of biomass supply chains is challenging because of its 
seasonal and widely geographically dispersed availability and uncertain quality (Zandi Atashbar et al. 2016). 
Consequently, ensuring that a continuous supply is available will require biomass residue to be collected from several 
sources, introducing biomass quality variability into the system (Shabani and Sowlati 2013). In co-firing systems, 
feedstock composition must be considered because blending fuels results in the blending of their properties (Veijonen 
et al. 2003). Existing handling equipment are not designed to handle significantly different biomass properties. 

Biomass is typically characterized by high moisture content and low lower heating value (LHV), which can 
significantly impact conversion yield and supply chain management decisions (Pérez-Fortes et al. 2014). High 
moisture content decreases LHV or the amount of energy that may be generated from the combustion of the feedstock 
(Boundy et al. 2011). Additionally, the high alkalinity of the ash content of biomass leads to deposit formation in the 
conversion equipment, particularly slagging and fouling, which warrants the need for displacement limits. Not 
considering feedstock quality may artificially lower costs and emissions during planning, and cause the system to 
incur dramatically more costs and environmental impact to adjust their initial plans and designs. Significant financial 
losses and environmental emissions will ensue when two batches of feedstock yield considerably different amount of 
energy (Castillo-Villar et al. 2017). Moreover, biomass properties are inherently plagued with uncertainties, 
significantly influenced by external factors, such as climate, weather, and cultivation and harvesting approaches; the 
effect of these separately and their interactions are difficult to predict and measure (Ghaderi et al., 2016). 
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Three possible configurations may be implemented in co-firing systems, particularly direct, indirect and 

parallel co-firing. Under direct co-firing systems, biomass can be used directly as secondary fuel in power plants to 
partially displace coal; a single common boiler is used to burn a mix of biomass and coal. This configuration is the 
most used because it is relatively simpler and cheaper. However, there is a higher risk for corrosion of the equipment 
because of unconventional fuel composition. To deal with this, only low co-firing rates or displacement limits are set. 
This risk is minimized with indirect co-firing because biomass is separately processed from coal; and thus, allows for 
higher co-firing rates. Biomass is first converted into syngas through gasification or into bio-oil and syngas through 
pyrolysis, which are used as secondary fuel in direct co-firing systems. The solid biochar by-product from the thermal 
conversion of the biomass can be used as soil fertilizer, which can reduce GHG emissions through carbon 
sequestration. Thus, adopting this can potentially realize negative emissions for the biomass fraction of the power 
plant feedstock. Investment costs for indirect co-firing is relatively more expensive than direct co-firing because it 
requires a separate biomass energy conversion plant. Parallel co-firing systems burn coal and biomass in separate 
boilers that feed into a common turbine (Agbor et al. 2014). The tradeoffs between the three schemes reiterate the 
importance of considering conflicting economic and environmental objectives. 
 

The application of biochar to soil leads to the permanent sequestration of recalcitrant carbon (Woolf et al. 
2010). Biochar-based systems are natural extensions of biomass-based energy systems (He et al. 2017). Biochar 
streams have different quality levels based on the feedstock used and the process conditions undergone by the 
feedstock. These must be matched with biochar sinks, such as agricultural lands, that have various contaminant 
tolerance limits to control and avoid the risks of biochar application to soil (Belmonte et al. 2017), and to maximize 
its capability and residency of storing carbon in the long term.  
 

The outline of the rest of the paper is as follows. The next section presents a literature review. Section 3 
describes the MINLP model formulation. A case study is solved and discussed in Section 4 to demonstrate model 
validity and capabilities. Finally, conclusions and recommendations for future work are provided in Section 5. 

  
2. Literature Review 
 
The planning and management of biomass supply chains have primarily been modelled mathematically using either 
simulation or optimization models. Although, simulation modelling has several strengths, including high flexibility, 
and the ease of dealing with stochastic, large, and complex supply chains, it is criticized for its inability to optimally 
design large-scale supply chains considering multiple conflicting objectives, which is inherent in biomass co-firing 
supply chains. Hence, several studies have opted to use optimization models to represent, design, and plan biomass 
co-firing supply chains (Ba et al., 2016).  
 

Despite the importance of feedstock quality and its significant impact on conversion efficiency, no study has 
properly captured it in optimization models. The models proposed by Mohd Idris et al. (2018) and Dundar et al. (2016) 
decided on the optimal blending ratios for biomass and coal to satisfy a minimum biomass percentage regulation; 
however, they did not give any consideration for biomass properties. Pérez-Fortes et al. (2014) considered biomass 
composition in equipment requirements, but properties were modelled as deterministic parameters with no impact on 
conversion efficiency and equipment degradation. 

 
Quantitative approaches can support the optimal synthesis of such systems to capture economic and 

environmental benefits, costs, and challenges, such that unacceptable compromises are minimized (Otte and Vik 
2017). Tan (2016) was the first to propose an optimization model for the design of biochar carbon management 
networks which allocated biochar with different contaminant levels to sinks with predefined storage capacities and 
contaminant level limits. Belmonte et al. (2017) and Belmonte et al. (2018) extended this with a two-stage and a bi-
objective optimization model respectively that minimized costs and maximized carbon sequestration. Noticeably, 
studies considering the optimal design of biochar-based carbon management networks integrated with biomass or 
biomass co-firing networks remain limited. In addition, existing models assume a predefined co-firing scheme for the 
biomass co-firing network. However, this forces the model to establish a network relying on what the specific co-
firing scheme requires; optimal solutions obtained in exclusive setups may not be the global optimal for the given 
problem. 
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Integrating uncertainty is needed because deterministic parameters are difficult to estimate in practical 
situations (Amin and Zhang 2013). Even a small level of uncertainty could result in a meaningless optimal solution 
(Ben-Tal and Nemirovski 1999), especially for a system that involves investment decisions that are difficult and costly 
to reverse. Biomass networks typically experience uncertainties in biomass composition, but existing studies are not 
able to properly consider this. Optimization models for biomass co-firing applications that incorporate uncertainties 
are still limited (Ghaderi et al. 2016). Stochastic optimization is the most commonly used approach. Castillo-Villar et 
al. (2017) considered biomass feedstock composition, specifically moisture and ash content, as uncertain parameters 
in a stochastic programming model but only additional costs to handle and treat the excess moisture and ash were 
captured. Similarly, Gonela et al. (2015) considered uncertain energy demand, energy selling price, and biomass 
supply using fuzzy numbers. 
 

However, there are three major weaknesses to the stochastic approach, (1) most real-world cases have 
insufficient access to historical data needed to establish probability distributions for the uncertain parameters, (2) the 
optimal solution is usually infeasible for most realizations of uncertainty, and (3) uncertainty is usually modelled 
through scenario-based stochastic programming, which can develop into large-sized, complex, and computationally 
challenging or intractable problems. Robust optimization is a suitable alternative to this because it can provide optimal 
solutions impervious to any realization of the uncertainty in a specified bounded set (Pishvaee et al. 2011). 
Nonetheless, it has received significantly less attention in supply chain network design (Govindan et al. 2017).   

 
To date, no other study has been made that simultaneously consider economic and environmental objectives 

while incorporating the impact of uncertain feedstock properties on conversion performance, and other relevant 
decisions. The robust optimization model proposed in this study will decide whether each existing coal power plant 
must be retrofitted for co-firing, which would require capital investments that must be justified by the supply of 
biomass. For plants that are chosen for this investment, the periods the co-firing option will be used, where and how 
much biomass must be sourced for each plant, the biomass co-firing rate, as well as the optimal biochar allocation.  
 
3. Model Formulation 
 
A mixed integer nonlinear programming model was developed for the biomass co-firing network described, which 
makes investment and operational decisions that considers overall costs and environmental emissions while satisfying 
supply and demand constraints. The model also considers fuel properties as uncertain parameters that impact the 
efficiency of conversion processes. Table 1 presents the indices while Table 2 defines the parameters and decision 
variables used in the following model formulation.  
 

Table 1: Indices 
Notation Definition 

i Biomass source 
j Coal power plants 
k Biochar sinks 
l Biochar contaminant types 
n Co-firing schemes 
t Time period 

 
Table 2: Parameters and decision variables 

Notation Definition 
𝐷𝐷𝑡𝑡  Energy demand on period t 
𝑠𝑠𝑖𝑖𝑖𝑖  Available biomass at source i on period t 
𝐿𝐿𝑗𝑗𝑗𝑗𝑢𝑢  Upper displacement limit of power plant j for co-firing scheme n 
𝐿𝐿𝑗𝑗𝑗𝑗𝑙𝑙  Lower displacement limit of power plant j for co-firing scheme n 
𝑞𝑞𝑐𝑐 LHV of coal 
𝑔𝑔 Higher heating value of biomass 
𝑊𝑊𝑗𝑗 Baseline coal usage in power plant j 
𝑓𝑓𝑗𝑗𝑗𝑗 Concentration of contaminant l in the biochar produced in power plant j  
𝑓𝑓𝑙𝑙𝑙𝑙∗  Maximum allowable concentration of contaminant l in biochar sink k 
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𝑇𝑇𝑘𝑘 Total biochar storage capacity in sink k 
𝑑𝑑𝑖𝑖𝑖𝑖  Distance from biomass source i to power plant j 
𝑟𝑟𝑗𝑗𝑗𝑗 Distance from power plant j to biochar sink k 
𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 Cost to retrofit power plant j for co-firing scheme n 
𝑎𝑎𝑗𝑗𝑗𝑗 Biomass combustion cost in power plant j on period t 
𝑝𝑝𝑖𝑖𝑖𝑖  Cost of biomass from source i on period t 
ℎ Transportation cost 
𝛾𝛾 Emissions due to coal combustion 
𝑒𝑒 Transportation emissions 
𝑧𝑧𝑛𝑛 Biochar yield from co-firing scheme n 
𝑃𝑃 Biochar application cost 
𝐺𝐺𝑘𝑘 Sequestration factor of biochar sink k 
𝜓𝜓 Allowable soil contaminant tolerance factor 
𝑣𝑣𝑖𝑖𝑖𝑖  LHV of biomass in power plant j on period t 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖  Amount of biomass from source i to power plant j on period t 
𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗  Amount of biochar generated from power plant j and sequestered in sink k on period t 
𝑞𝑞𝑗𝑗𝑗𝑗 LHV of feedstock in power plant j on period t 
𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 Co-firing rate of biomass from source i in power plant j on period t (mass basis) 
𝑅𝑅𝑗𝑗𝑗𝑗 Binary variable, 1 if power plant j is retrofitted for co-firing scheme n 

𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗  
Binary variable, 1 if biomass option of power plant j retrofitted to co-firing scheme n is 
used on period t 

 
𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ ∑ 𝛾𝛾𝑊𝑊𝑗𝑗𝑢𝑢𝑗𝑗𝑗𝑗𝑡𝑡𝑗𝑗 + ∑ ∑ ∑ 𝐺𝐺𝑘𝑘𝑡𝑡 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘𝑗𝑗 − ∑ ∑ ∑ ∑ 𝑒𝑒�𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗�𝑡𝑡𝑘𝑘𝑗𝑗𝑖𝑖   (1) 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ ∑ 𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗𝑛𝑛𝑗𝑗 + ∑ ∑ ∑ 𝑃𝑃𝑡𝑡 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘𝑗𝑗 + ∑ ∑ ∑ ∑ ℎ�𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗�𝑡𝑡𝑘𝑘𝑗𝑗𝑖𝑖 +   ∑ ∑ ∑ (𝑎𝑎𝑗𝑗𝑗𝑗 + 𝑝𝑝𝑖𝑖𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗𝑖𝑖   (2) 
 

The objective functions of the biomass co-firing network are to maximize environmental emissions 
reductions (1) and to minimize additional costs (2). Emissions reduction is equated to the sum of combustion emissions 
of displaced coal and biochar-based carbon sequestration less the emissions from transporting biomass to coal power 
plants and biochar to biochar sinks. On the other hand, additional costs are incurred from retrofitting, biochar 
application, transportation, and biomass purchase and combustion costs.  

 
∑ 𝑞𝑞𝑗𝑗𝑗𝑗𝑊𝑊𝑗𝑗𝑗𝑗 ≥ 𝐷𝐷𝑡𝑡      ∀𝑡𝑡  (3) 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ≤ 𝑠𝑠𝑖𝑖𝑖𝑖              ∀𝑖𝑖𝑖𝑖  (4) 

𝑅𝑅𝑗𝑗𝑗𝑗 ≥ 𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗              ∀𝑗𝑗𝑗𝑗𝑗𝑗  (5) 

∑ 𝑅𝑅𝑗𝑗𝑗𝑗𝑛𝑛 ≤ 1             ∀𝑗𝑗  (6) 

∑ 𝐿𝐿𝑗𝑗𝑗𝑗𝑙𝑙 𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗𝑛𝑛 ≤ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ ∑ 𝐿𝐿𝑗𝑗𝑗𝑗𝑢𝑢 𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗𝑛𝑛              ∀𝑗𝑗𝑗𝑗  (7) 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗(1 − 𝑧𝑧𝑛𝑛)𝑛𝑛 = 𝑊𝑊𝑗𝑗𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖            ∀𝑖𝑖𝑗𝑗𝑗𝑗  (8) 

𝑞𝑞𝑗𝑗𝑗𝑗 = ∑ �𝑣𝑣𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 +  𝑞𝑞𝑐𝑐(1 − 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖)�𝑖𝑖             ∀𝑗𝑗𝑗𝑗  (9) 

∑ 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘 = ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗𝑧𝑧𝑛𝑛𝑛𝑛𝑖𝑖             ∀𝑗𝑗𝑗𝑗  (10) 

∑ 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 𝑇𝑇𝑘𝑘             ∀𝑘𝑘𝑘𝑘  (11) 

∑ ∑ 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑗𝑗𝑗𝑗𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗𝑛𝑛𝑗𝑗 ≤ ∑ 𝜓𝜓𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑙𝑙𝑙𝑙∗𝑗𝑗             ∀𝑘𝑘𝑘𝑘𝑘𝑘  (12) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗 , 𝑞𝑞𝑗𝑗𝑗𝑗 ,𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 0    𝑅𝑅𝑗𝑗𝑗𝑗,𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗 ∈ {0,1} (13) 
 

The model constraints include demand satisfaction as defined in (3), which is dependent on the LHV of the 
mixed fuel feedstock and the amount of feedstock handled by the conversion equipment. Equation (4) limits the 
amount of biomass that can be purchased and transported from each source location to the source’s available supply 
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each period. Equation (5) ensures that co-firing may only be used if the power plant has been retrofitted for co-firing, 
while (6) defines the co-firing schemes as mutually exclusive options. Equation (7) sets upper and lower coal 
displacement limits to the biomass and coal blends that will be used in each power plant and period depending on the 
co-firing scheme implemented. The total biomass to undergo conversion in modified coal power plants is described 
in (8) as the product between the baseline coal usage of the power plant and co-firing rate. Equation (9) computes for 
the LHV of the mixed feedstock fuel from the sum-product of the mass percent based on the co-firing share of each 
of the material and their LHVs. The amount of biochar that may transported from coal power plants is shown in (10) 
as a function of the biomass processed and the fraction biochar yield of the co-firing scheme selected. Equation (11) 
limits the amount of biochar allocated to each sink by the storage capacity of the sink, while (12) ensures that the 
contaminant levels of the biochar allocated to each sink does not exceed the allowable contaminant levels. Equations 
(1)-(13) show the optimization model for the co-firing network without the consideration of uncertainties. 

 
However, there is a need to consider uncertainties in the design and management of biomass co-firing 

networks, which may arise from variability in biomass quality, particularly in its LHV. Realizations of this uncertainty 
can significantly affect the feasibility and performance of the network decisions. Thus, it is important that the optimal 
solution obtained remains feasible despite the occurrence of the highest possible degree of uncertainty. With this, the 
deterministic optimization model is modified to account for uncertainties in biomass LHV (𝑣𝑣𝑖𝑖𝑖𝑖 ). This affects the 
demand (3) and LHV (9) constraints in the above formulation. The revised formulation for these constraints is given 
in (14) and (15), where the tilde ‘~’ accent represents uncertainty in the parameter. 

 
∑ 𝑞𝑞�𝑗𝑗𝑗𝑗𝑊𝑊𝑗𝑗𝑗𝑗 ≥ 𝐷𝐷𝑡𝑡      ∀𝑡𝑡  (14) 

𝑞𝑞�𝑗𝑗𝑗𝑗 = ∑ �𝑣𝑣�𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 +  𝑞𝑞𝑐𝑐(1 − 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖)�𝑖𝑖             ∀𝑗𝑗𝑗𝑗  (15) 
 

This uncertainty is incorporated through the Target-Oriented Robust Optimization (TORO) approach 
proposed by Ng and Sy (2014). With TORO, the original objectives of additional costs minimization and emissions 
reduction maximization are translated into targets that consider the different scenarios that result from biomass LHV 
uncertainty. This procedure allows the decision maker to select among non-dominated solutions based on how much 
risk or uncertainty they are willing to tolerate. Equation (16) shows the modified objective function, which now 
maximizes the robustness index (𝜃𝜃 ∈ [0,1]), which is the degree of uncertainty that can be tolerated by a solution 
before it becomes infeasible. A higher value of 𝜃𝜃 implies a larger degree of perturbation for the biomass LHV; thus, 
a more risk-averse decision maker would prefer a higher 𝜃𝜃 because it is more robust. This replaces and is subject to 
the previously shown objective functions, which are translated into costs increase (𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and emissions reductions 
(𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒) targets shown in (17) and (18). The bisection search algorithm is used to maximize 𝜃𝜃. 

 
𝑚𝑚𝑚𝑚𝑚𝑚 𝜃𝜃  (16) 

∑ ∑ 𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗𝑛𝑛𝑗𝑗 + ∑ ∑ ∑ ∑ ℎ�𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗�𝑡𝑡𝑘𝑘𝑗𝑗𝑖𝑖 + ∑ ∑ ∑ 𝑃𝑃𝑡𝑡 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘𝑗𝑗 + ∑ ∑ ∑ (𝑎𝑎𝑗𝑗𝑗𝑗 + 𝑝𝑝𝑖𝑖𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗𝑖𝑖 ≤ 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (17) 

∑ ∑ 𝛾𝛾𝑊𝑊𝑗𝑗𝑢𝑢𝑗𝑗𝑗𝑗𝑡𝑡𝑗𝑗 + ∑ ∑ ∑ 𝐺𝐺𝑘𝑘𝑡𝑡 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘𝑗𝑗 − ∑ ∑ ∑ ∑ 𝑒𝑒�𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗�𝑡𝑡𝑘𝑘𝑗𝑗𝑖𝑖 ≥ 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒  (18) 

 
4. Model Validation 
 
The model was validated through CPLEX, a linear solver, in MATLAB. To facilitate these, nonlinear equations were 
linearized. The network considered includes 6 potential locations for biomass sources, 4 existing coal power plant, 
and 3 potential biochar sinks. Hypothetical values were used for the validation, the parameters used are summarized 
in the appendices. Biomass LHVs are uncertain in nature and could assume values bounded within predefined 
maximum and minimum values. 

 
Targets are set using the equations shown in (19) and (20), which can be used by decision makers as a guide 

when setting their targets. Establishing targets that are too optimistic leads to risks of not being able to meet these 
targets, while setting too conservative targets limits the results of the model, which could result in significant 
opportunity losses for the decision maker. 

 
𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛼𝛼𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(1) + (1 − 𝛼𝛼)𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(0)  (19) 
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𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛼𝛼𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒(1) + (1 − 𝛼𝛼)𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒(0)  (20) 
 

Equations (19) and (20) can be used to identify a range of targets through the parameter 𝛼𝛼 ∈ [0,1] for both 
costs and emissions reductions. In the two equations, 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(0) and 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒(0) reflect the costs and emissions reductions 
under the most optimistic conditions where 𝛼𝛼 = 0, while 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(1) and 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒(1) represent the most pessimistic conditions 
where 𝛼𝛼 = 1. Eleven values of 𝛼𝛼 ∈ [0,1] were considered in increments of 0.1, providing 11 targets for each costs 
and environmental emissions. Then, a solution is obtained for each of the targets through a bisection search 
maximizing the robustness index 𝜃𝜃. 

 
The result of the model validation which compares the trend of additional costs and environmental emissions 

reductions are shown in Fig. 1. It can be observed that as the robustness index 𝜃𝜃 increases, both additional costs and 
environmental emissions reduction decreases. With risk-averse behavior, 𝜃𝜃 approaching 1, less biomass feedstock 
would be used for co-firing and biochar soil amendment by the network. This is to minimize the risk of using biomass 
feedstock that has lower LHV values which could result in not being able to satisfy demand requirements. Thus, less 
additional costs would be incurred by the supply chain as costs to purchase and transport biomass, and to transport 
and apply biochar to soil sinks are reduced. On the other hand, a risk-seeking decision maker would choose to 
implement co-firing more, especially indirect co-firing to reach the highest possible reduction on environmental stress. 
This explains why higher costs would have to be paid as the robustness index decreases. However, having significantly 
lower robustness indices will reflect on  the network’s capability to handle uncertainty realizations. Particularly, 
significantly worse performance on the emissions reductions may occur, as well as shortcomings in reaching demand 
especially if biomass LHV is lower than expected.  

 

 
Figure 1: Comparison of Cost and Environmental Emissions Reduction Trend. 
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Figure 2: Optimal biomass co-firing network with robustness index 𝜃𝜃=0.50.  
 

The optimal biomass co-firing supply chain network at robustness index  𝜃𝜃 = 0.50 is shown in Fig. 2. In this 
scenario, it can be observed that all existing power plants were chosen to be retrofitted for indirect co-firing because 
it allows for higher coal displacement and biochar application to soil which would increase reductions in 
environmental emissions. Power plants are supplied biomass from the sources closest to them every period to minimize 
environmental emissions contributions from transportation. Similarly, all power plants bring biochar to a single sink 
to avoid emitting GHG emissions from transporting to several sinks. Furthermore, the model does not choose to 
maximize the allowable coal displacement limits. The LHV of the mixed fuel processed by the power plants in each 
period shown in the lower left-hand corner of Fig. 2 show that LHV decreases as more biomass is processed by the 
conversion equipment because of relatively low biomass LHV. As a result, only a limited amount of biomass can 
undergo conversion to electricity in the power plants to ensure that the demand each period can be satisfied, while 
maximizing the reductions in environmental emissions. On the other hand, when biomass LHV is less uncertain, for 
example at 𝜃𝜃 = 0.00, the more biomass is used by the system, and more biochar are applied to soil to maximize carbon 
sequestration.      

 
5. Conclusions and Recommendations 
 
A multi-objective robust optimization model for the design of biomass co-firing networks considering uncertain 
biomass quality has been developed and proposed in this study. The model considers both additional costs and 
reductions in environmental emissions during optimization, while ensuring that a robust solution that is relatively 
immune to changes in uncertain parameters is identified depending on the risk-appetite of the decision maker. This 
can guide decision-makers, such as network owners and managers, to commit to a final design. Compared to existing 
multi-objective optimization models which assume deterministic scenarios, uncertainty biomass quality is captured. 
Furthermore, the scope of the supply chain is extended to consider biochar-based carbon sequestration and selection 
between co-firing technologies which has not been addressed in existing literature. The model is validated through 
solving a hypothetical case study. The results of Monte Carlo simulation (𝑝𝑝 = 0.02) demonstrated that the robust 
model is more effective than its deterministic counterpart, as it is able to provide network configurations that are 
relatively more immune to realizations of uncertainty in biomass quality. 
 

The environmental impacts of biomass co-firing systems and the application of biochar as soil amendment 
are not limited to only carbon or GHG emissions. Hence, future work can explore other aspects of the supply chain’s 
environmental impact. For example, other potential categories of environmental impacts not captured in this study 

1434



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

include acidification, human toxicity, and eutrophication potential. In addition, other entities involved in the network 
may be integrated, such as pretreatment and storage facilities. Pretreatment may be used to improve the quality of 
biomass before it is converted to energy in power plants. This way, the allowable co-firing limits and energy yield for 
the biomass fraction of the feedstock are increased. Keeping biomass and coal in inventory across periods can ensure 
that the proper amounts of feedstock with desirable properties are available for combustion to satisfy demand every 
period. The proposed modelling framework may be useful in selecting between available pretreatment technology 
options, and production and inventory planning. Lastly, the model may be applied to solve real-world problems. 
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Appendices  
 

Appendix A: Biomass Data. 

Biomass Source Supply (Mt/y) LHV (Low, High) (GJ/t-y) 
1 2 3 4 5 

1 0.10 7, 15 10.5, 20 13, 17.2 9, 17.86 7.5, 18.8 
2 0.15 12, 15 9, 13 10, 17.1 12.5, 21.5 9.2, 17.8 
3 0.10 18, 21 11, 16 12, 16.5 17.5, 22.8 11.5, 19.37 
4 0.25 10, 18 13, 19 11.56, 18.3 18, 18 10.35, 16 
5 0.10 13, 18 14.2, 18.5 12.5, 14.8 15, 17.5 14, 18 
6 0.20 9.5, 17 15, 21 11, 18 10.3, 16 15, 15 

 
Appendix B: Co-firing Scheme Parameters. 

Co-firing Scheme Displacement Limits Biochar Yield Power Plant Retrofitting Costs (US$) 
1 2 3 4 

1 0, 0.2 0.0 3000 3000 2500 2500 
2 0, 0.5 0.2 8000 9000 7500 7200 

 
Appendix C: Power Plant Data. 

Power Plant Baseline Coal Usage (Mt/y) Biochar quality (t/Mt) 
PAH PAH PAH 

1 0.60 10 20 2 
2 0.75 2 2 1 
3 1.80 1 0.8 3 
4 1.50 2 3 4 

 
Appendix D: Biochar Sink Data. 

Biochar Sink Capacity (Mt) Sequestration Factor (Mt CO2/Mt) Biochar quality limit (t/Mt) 
PAH Zn Pb 

1 0.06 3.52 55 50 34 
2 0.05 2.58 40 125 33 
3 1.00 3.56 25 30 12 
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Appendix E: Other Relevant Parameters. 
Coal LHV 22.73 GJ/t 
Biomass combustion cost $5000/Mt 
Biomass purchase cost $2000/Mt 
Transportation cost $200/km 
Biochar application cost $5000/Mt 
Coal combustion emissions 3.16 Mt CO2/Mt 
Transportation emissions 0.0001 Mt CO2/km 
Demand 100 GJ/y 
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