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Abstract 

This paper describes the effects of chromosome length for solving maritime inventory routing problems (MIRP) by 
using a hyper-heuristics based Genetic Algorithm (GA). The approach uses a set of heuristic combinations, each of 
which consist of strategies that correspond to a ship assignment. These strategies are represented by a chromosome 
that may have several assignments. We examine several number of chromosome length to encourage the evolution of 
good heuristics combinations. Moreover, a variation of several number chromosome length is necessary since we do 
not know in advance how many ship assignments are needed to cover demands during a predefined planning horizon. 
At every iteration a number of chromosomes are evaluated and evolved within a GA framework. In this study, the 
approach has been applied on several test cases for transporting multiple oil products from a production facility to 
some consumption ports, by using several heterogeneous ships with undedicated compartments. The results show that 
a hyper-heuristics based GA reaches the same global optimal as the solutions in the mathematical model, but with a 
significant decrease in computational time. Moreover, the use two numbers of chromosome length proves that three 
assignments in one step (3AiOS) mostly got better solutions and lower minimum total number of assignments than 
the two assignments (2AiOS). 
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1. Introduction

Maritime inventory routing problem (mIRP) can be defined as an inventory routing problem (IRP) that uses ships to 
distribute product(s). Many papers have discussed this problem, for example the model considered in Christiansen, 
and Nygreen (1998a and 1998b), Christiansen (1999), Hwang (2005) and Al-Khayyal and Hwang (2007). The first 
three papers considers a single product model, while the last two extends the problem to have multiple non-
intermixable products. An extensive survey on maritime scheduling research is provided in Christiansen et al. (2007) 
and Christiansen and Fagerholt (2008).  

Several papers show a real world application of mIRP, such as Christiansen et al. (2011), Furman et al. (2011) and 
Song and Furman (2013). The first paper discusses the distribution of multiple grade cements from two production 
ports to 28 consumption ports in Norway. In this problem, the delivery of a ship is limited to a pair of one production 
and one consumption port. They developed a method that consists of two components: a heuristic construction and a 
genetic algorithm to solve the problem. While the last two papers discussed the same problem, transporting a single 
vacuum gas oil (VGO) product from several production ports in Europe to refineries in the United States. In this 
problem, the ships may pick-up the product at multiple nodes before distributing it to the several ports. They use a 
method that consists of a large neighbourhood search and a branch-and-cut algorithm for solving this problem.  

This paper also discusses a mIRP that delivers multiple products from a production port to several ports. The problem 
is similar to the model discussed in Christiansen et al. (2011). The similarities are multi-intermixable products, the 
undedicated compartments that need an algorithm to assign products into compartments and the continuous time 
model. However, in our model we assumed that the ships may visit up to two ports in one assignment, instead of one 
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port in Christiansen et al. (2011). Because of this difference, we have a procedure to incorporate the sequence of 
visiting port and how to divide the product quantities between these two consumption ports. In contrast to our model, 
Furman et al. (2011) and Song and Furman (2013) discussed a single product and a discrete time model. However, 
they have a variation to have multiple pick-up and deliveries in their problem. Each problem in the mIRP has some 
uniqueness and the problem is of how to model the problem such that it is flexible enough to implement various 
scenarios of the problems as mentioned in Song and Furman (2013). 

 
Heuristic has become a popular tool for solving various scheduling problems because of its superiority in solving 
problems within a reasonable time. However, as stated by Cowling et al. (2002) and Chakhlevitch and Cowling (2008), 
a heuristic may perform well for a certain problem instance, but it is unlikely that the heuristic may be applied 
successfully to a different instance of the problem. This problem specific method means that it is hard to implement 
it for a problem that has many variations, such as mIRP. Many researchers have proposed to use indirect solution 
heuristics to overcome this limitation. Cowling (2000) has introduced a concept of hyper-heuristics for this indirect 
heuristics and has applied the method in several scheduling problems as described in Cowling et al. (2000, 2002). The 
method uses heuristics to choose a lower level of heuristics. An extensive survey of the development of this method 
can be seen in Cowling et al. (2002). 
 
This paper proposes to use an indirect method heuristic referred to hyper-heuristics as defined in Cowling et al. (2000). 
As far as we know, our approach is the first to use this approach in solving a maritime inventory routing problem. 
Although Christiansen et al. (2011) also used GA to solve mIRP, however their method is different from us. They 
develop a combination of a construction heuristic and a genetic algorithm. The heuristic is an iterative procedure to 
get a solution, however the solution given depends on the parameters generated in the GA. They uses GA to modify 
the parameters in the objective function to form different scenarios. Their domain is in the solution space, while ours 
is in the solution method.  
 
Moreover, our method adds another feature that is an adaptive length of chromosome. As mentioned in Han et al. 
(2004), the purpose of this adaptation is to encourage the evolution of good heuristics combinations. Furthermore, the 
adaptive length is necessary in our problem since we do not know in advance how many ship assignments are needed 
to cover demands during the predefined planning horizon. 

 
Han et al. (2004) uses an adaptive length of chromosome to solve a trainer scheduling problem. The evolution of good 
heuristics combinations can be achieved by removing poor performing heuristics from a chromosome and by also 
injecting others. The method selects two points, described as gene m and gene n, and evaluates whether the genes 
between these two points will improve the objective function or not. If it is improving, the block genes will be injected 
in the chromosome. Otherwise, they will be removed. 
 
Although we also use an adaptive length of chromosome, we have a different approach because our problem is multi 
period problem. A decision at a certain time or stage will change the state or condition of ships or ports, for example 
the position of ships and their compartment levels, and the storage levels of the ports. If different decision is made at 
that particular time, the state or condition will be different from the previous one. Each decision will have its own 
effect. Because of that, the remove-inject method cannot be applied in our problem. The removal of one or more 
heuristics will make the initial state for the next heuristic gene, let us say gene n+1, different from the state before the 
genes are removed. In our approach, the genes of a chromosome can only be evaluated consecutively from the first 
gene until the last gene.  
 
This paper is an extension to our previous paper as described in Siswanto et al. (in press). By using the same problem 
which is applied in a complex distribution network faced by a national oil company in Indonesia, the objective of this 
paper is to compare the performances of two differences number of chromosome length: two or three assignments in 
one step (2AiOS or 3AiOS). Since we do not describe the problem again, the reader may refer to our previous paper 
(Siswanto et al., in press) to have detailed problem description. The outline of this paper is as follows: section 2 
describes the terminology and method of the hyper-heuristics based genetic algorithm. Then, section 3 reports the 
computational results of the case problems. Finally, the last section gives some concluding remarks.  
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2. Hyper-heuristics based Genetic Algorithm 
 
In this section, we describe some terminologies used in the hyper-heuristics based Genetic Algorithm (GA) and its 
adaptive length first. 
 
The first terminology is an assignment, which is defined as one movement of a ship from its current position to another 
port to deliver products. The movement may involve visiting one or two ports in between. The ship first visits a 
production port before going to consumption port(s). In this case, we enforce a limit of a maximum of two consumption 
ports that can be visited in one assignment. We define a step as the number of assignments in one chromosome. This 
can be seen as the number of steps of look ahead.  Each assignment will change the condition or status of a collection 
of variables defined as a state, for example a ship’s time and position, its compartment levels and their contents, and 
a port’s time and storage levels. Ship’s time is the time of a ship when it finishes its assignment, and hence when it is 
ready for the next assignment, while the port’s time is the last time of a port visited by a ship. These two values are 
updated whenever a ship has completed its assignment. We denote SIn as an initial state of assignment n, while SAn is 
a state after processing assignment n. Obviously, SAn = SIn+1. 
 
Next, coverage day (CD) is defined as the number of days that port i can cover the demand of product k from its 
storage before it runs out (for a discharge port) or before its storage reaches the maximum capacity (for a supply port). 
This parameter is used to determine which port and its storage needs to be served next. The less number of coverage 
days, the more prioritize a port to be visited by a ship. Hwang (2005) and Savelsbergh and Song (2007) use urgency 
to state coverage day. 
 
In solving this maritime inventory routing problem, we consider hyper-heuristics as a set of heuristic and select one 
of the heuristics for use in each sub-problem. We identified there are four sub-problem in this problem. The first is 
ship selection rule to determine which ship to be assigned. The second is routing determination rule to select which 
ports need to be served by the selected ship. The third is the loading activity rule to determine the type and the quantity 
of products to be loaded and simultaneously to assign which product are to be loaded into which compartment. The 
last is the unloading rule to determine the type and the quantity of products to be unloaded. 

 
In this hyper-heuristics approach, we consider a combination of heuristic that consist of four rules, i.e. one for each 
sub-problem. For example a combination of rules: S0–R0–L0–U0 means that a ship selected based on the least ship’s 
time (S0), the routing of the selected ship will be a production port and a port that has the least CD (R0), we assign 
product [1] into compartment [1] and product [2] into compartment [2] of the selected ship with the quantity loaded 
as the compartment capacity (L0), and unloaded all the products in the ship at the selected discharge port (U0). This 
combination of heuristic can solve problems, but the performance of the solution may be different from other 
combinations. The discussion of single combination results can be seen in Siswanto et al. (2011). This combination 
of heuristics is a representation of an assignment of a ship as previously defined and will be encoded as a chromosome. 
The complete single heuristic for each sub-problem and how these hyper-heuristics are encoded as chromosome are 
explained in Siswanto et al. (in press). 
 
In our method, the length of a chromosome depends on the number of assignments defined as one step. The previous 
combination S0–R0–L0–U0 can be an example one assignment in one step chromosome, called as 1AiOS chromosome. 
Another example, S0–R0–L0–U0–S1–R2–L0–U2 as a two assignments in one step (2AiOS) chromosome. The number 
of assignments in one step chromosome can be set to alter the solution space. The larger the number of assignments 
the larger the solution space which promote to find many good combinations. Although we can set as many as number 
of assignments in one step, let say three number of assignments in one step (3AiOS), the last (the third) assignment 
may not be processed due to a complete satisfied or a worse solution has been found. In this algorithm, a variable sa 
is used to specify the stopping assignment number.  
 
It is also possible that another step is needed whenever the demand for the entire planning horizon has not been reached 
yet when the last assignment of a step is completed. This is why we called this chromosome as an adaptive because 
of the flexibility of the lenght of chromosome. From this point on, we use notation geneinm to represent the gene 
number m of assignment n in step i. Also, 2AiOS-- and 3AiOS-- represent scenarios of two and three assignments in 
one step. The (--) indicates the length of planning horizon we modeled. We will discuss in the computational study 
section how the number of assignments in one step will have effects in solving problems in the next section. 
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3. Computational Results and Analysis 
 
The approach described in the previous section is an extension to the model introduced in Siswanto et al. (2011) and 
Siswanto et al. (in press). Instead of running several individual heuristics, the proposed method tries to find the best 
solution in a single run. We generate test problems (TP) under various conditions to demonstrate the applicability of 
the proposed method. The detail description of the test problems can be found in Siswanto et al. (2011). 
 
In the hyper-heuristics based GA, we randomly generated a population of a hundred chromosomes at each generation. 
Each of the chromosomes in the population consists of two or three assignments in one step. We set the maximum 
number of generation is 80 for each step, intensifying a step is set to be 10 and the maximum steps is set to be eight. 
The chromosomes are evaluated based on the least fitness function by using algorithm 1. We keep 20 percent of the 
best chromosomes from the old population to form a new population in each generation.  
 
 

 
 

Figure 1. The Progress of Fitness Function of Various Scenarios of Test Problem 1 as a Function of Generation 
 
We conducted experiments to compare between the number of assignments in one step, which are two and three 
assignments. Moreover, we extended to solve the test problems until 30 day planning horizon (PH) to demonstrate the 
applicability of an adaptive length chromosome. Figure 1, Figure 2, and Figure 3 represent a solution of various 
scenarios of test problem 1. These figures show the progress of fitness function, total cost and the least Coverage Day 
among all storages in the ports as a function of generation. At the beginning of period the minimum total cost is the 
lowest value, on the other hand the fitness function is the highest one at that time. This is caused by the highest 
completion cost, added to the total cost since the least Coverage Day is the lowest value at this time. When the number 
of step is added, the total cost and the least Coverage Day significantly increase, on the other hand the fitness function 
significantly decrease. All of these scenarios have two steps, except scenario 2AiOS30 that has three steps. When 
generation becomes larger, all the demands have been fulfilled and they reach their levels to satisfy the demands until 
the end of planning horizon. At this point, the total cost will have the same value with the fitness function because 
there is no late shipment. 
 
As shown in Table 1, the hyper-heuristics got solutions for all test problems. The running time of the hyper-heuristics 
depends on the number of generation needed to solve the problem. The longer the number of day planning horizon 
the longer running time. Moreover, 2AiOS have shorter running time compared to 3AiOS, a significant decrease 
running time compared to mathematical model. Although the solution of the proposed method does not guarantee to 
always get a globally optimal solution as in the mathematical model, the best solutions of the proposed method have 
the same objective functions as the ones of mathematical model solutions. The proposed method provides good quality 
feasible solutions within an acceptable running time. Furthermore, almost all 3AiOS have the same or better objective 
functions compared to 2AiOS. Only problem test 1 of 20 day planning horizon and problem test 3 of 30 day planning 
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horizon have 2AiOS better than 3AiOS. However, 2AiOS are relatively easy to converge compared to 3AiOS because 
of their lower standard deviations. 
 

 
 

Figure 2. The Progress of Total Cost of Various Scenarios of Test Problem 1 as a Function of Generation 
 
 

 
 

Figure 3. The Progress of the Least Coverage Day of Various Scenarios of Test Problem 1 as a Function of 
Generation 

 
In this case, we only compared to the method to mathematical model as discussed in Siswanto et al. (2011), up to 15 
day planning horizon. Beyond this planning horizon, the running times of mathematical model are beyond the time 
limit. As shown in the Table 1, there are no difference in the best solutions between 2AiOS and 3AiOS for all test 
problems with 10 and 15 day planning horizon compared to mathematical model.   
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Table 1. The Result of Hyper-Heuristics based GA with comparing to Mathematical Model 
 

TP PH AiOS Name of 
Scenario 

Best Mathema-
tical Model 

Solution 

Hyper-Heuristics based GA (10 running repetition) 

Best 
Solution Gap (%) Maximum Average Standard 

Deviation 

Average 
Running 

Time  
(in second) 

1 

10 2  2AiOS10 38.0 38.0 0 38.0 38.0 0 291.6 
3 3AiOS10 38.0 38.0 0 38.0 38.0 0 352.1 

15 2  2AiOS15 73.0 96.0 31.5 96.0 96.0 0 800.1 
3 3AiOS15 73.0 73.0 0 73.0 73.0 0 807.7 

20 2  2AiOS20 - 105.0 - 105.0 105.0 0 910.7 
3 3AiOS20 - 120.0 - 120.0 120.0 0 1,514.3 

25 2  2AiOS25 - 143.5 - 143.5 143.5 0 1,228.0 
3 3AiOS25 - 119.5 - 119.5 119.5 0 2,113.8 

30 2  2AiOS30 - 168.0 - 168.0 168.0 0 1,570.3 
3 3AiOS30 - 166.0 - 177.0 168.4 4.56 2,829.6 

2 

10 2  2AiOS10 54.9 54.9 0 54.9 54.9 0 670.4 
3 3AiOS10 54.9 54.9 0 54.9 54.9 0 795.3 

15 2  2AiOS15 106.7 132.0 30.1 138.8 132.7 2.15 904.2 
3 3AiOS15 106.7 106.7 0 118.3 113.9 2.84 1,180.0 

20 2  2AiOS20 - 169.6 - 172.5 171.1 1.48 1,308.3 
3 3AiOS20 - 140.8 - 185.7 155.8 12.62 1,601.1 

25 2  2AiOS25 - 172.1 - 206.7 192.0 8.27 1,670.5 
3 3AiOS25 - 171.1 - 214.3 183.7 12.70 2,099.8 

30 2  2AiOS30 - 234.3 - 244.6 239.5 7.28 2,650.5 
3 3AiOS30 - 209.8 - 234.9 221.9 7.19 2,347.7 

3 

10 2  2AiOS10 42.1 42.1 0 42.1 42.1 0 216.9 
3 3AiOS10 42.1 42.1 0 42.1 42.1 0 269.6 

15 2  2AiOS15 76.8 84.5 10.0 84.5 84.5 0 684.6 
3 3AiOS15 76.8 76.8 0 85.5 91.4 2.17 932.4 

20 2  2AiOS20 - 134.3 - 134.3 134.3 0 1,305.5 
3 3AiOS20 - 110.4 - 115.8 111.5 2.28 1,989.0 

25 2  2AiOS25 - 146.8 - 146.8 146.8 0 1,221.1 
3 3AiOS25 - 140.8 - 174.4 155.9 13.83 1,904.0 

30 2  2AiOS30 - 186.5 - 199.6 190.7 6.19 1,518.9 
3 3AiOS30 - 199.4 - 202.5 201.2 0.82 1,971.6 

4 

10 2  2AiOS10 137.0 137.0 0 137.0 137.0 0 374.0 
3 3AiOS10 137.0 137.0 0 137.0 137.0 0 489.0 

15 2  2AiOS15 269.0 289.0 7.4 289.0 289.0 0 1,066.9 
3 3AiOS15 269.0 269.0 0 277.0 273.3 3.83 1,127.7 

20 2  2AiOS20 - 432.0 - 432.0 432.0 0 1,476.9 
3 3AiOS20 - 314.0 - 444.0 363.7 46.85 2,076.5 

25 2  2AiOS25 - 532.0 - 532.0 532.0 0 1,630.7 
3 3AiOS25 - 416.0 - 515.0 452.6 50.55 2,192.6 

30 2  2AiOS30 - 623.0 - 665.0 659.8 14.85 1,659.1 
3 3AiOS30 - 545.0 - 577.0 561.8 80.12 2,651.4 

5 

10 2  2AiOS10 91.0 91.0 0 91.0 91.0 0 226.1 
3 3AiOS10 91.0 91.0 0 91.0 91.0 0 271.3 

15 2  2AiOS15 208.0 208.0 0 216.0 209.6 3.85 493.0 
3 3AiOS15 208.0 208.0 0 208.0 208.0 0 644.8 

20 2  2AiOS20 - 378.0 - 378.0 378.0 0 1,402.3 
3 3AiOS20 - 304.0 - 314.0 305..0 3.16 1,865.2 

25 2  2AiOS25 - 406.0 - 406.0 406.0 0 1,043.9 
3 3AiOS25 - 346.0 - 457.0 391.0 52.21 1,861.1 

30 2  2AiOS30 - 488.0 - 607.0 523.5 42.09 1,563.2 
3 3AiOS30 - 482.0 - 584.0 528.8 36.06 2,539.9 

 
Table 2 shows the length of chromosome needed to solve each of the scenarios. The table provides minimum, 
maximum and average of number of steps and total number of assignments for each of the scenarios. For example, 
scenario 2AiOS30 of test problem 1 needs 3 steps each of which has two assignments. While 3AiOS30 of the same 
problem needs only 2 steps each of which 3 has assignments. Furthermore, the last step may not use all the assignments 
provided as shown in 2AiOS15 and 3AiOS25 of test problem 1. In the first scenario, the total length of chromosome 
is five assignments: the first two steps have two assignments while the last step has only one of two assignments 
provided. In the second scenario, it has also five total assignments: one step with three assignments while the last step 
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with only two of three assignments provided. Furthermore, all 3AiOS have the same or lower minimum total number 
of assignments compared to 2AiOS. The longer length chromosome encourages the evolution of good heuristics 
combinations. However it cost the longer running time. On the other hand, the average total numbers of assignments 
of 3AiOS30 are greater number than the ones of 2AiOS30 in Test problem 2, 3, and 5. Because some results of 
3AiOS30 have total number of assignments greater than the ones of 2AiOS30 in those problems.  

 
Table 2. The Length Chromosome Needed to Solve Each of the Scenarios 

 

TP PH 
Number 

Assignments 
in One Step 

Name of 
Scenario 

Minimum  Maximum  Average 
Number of 

Steps 

Average Total 
Number of 

Assignments 
Number 
of Steps 

Total number of 
Assignments 

Number 
of Steps 

Total number of 
Assignments 

1 

10 2 2AiOS10 1 2 1 2 1 2 
3 3AiOS10 1 2 1 2 1 2 

15 2 2AiOS15 2 3 3 5 2.1 3.3 
3 3AiOS15 1 3 1 3 1 3 

20 2 2AiOS20 2 4 2 4 2 4 
3 3AiOS20 2 4 2 4 2 4 

25 2 2AiOS25 3 6 3 6 3 6 
3 3AiOS25 2 5 2 5 2 5 

30 2 2AiOS30 3 6 3 6 3 6 
3 3AiOS30 2 6 2 6 2 6 

2 

10 2 2AiOS10 1 2 1 2 1 2 
3 3AiOS10 1 2 1 2 1 2 

15 2 2AiOS15 2 4 2 4 2 4 
3 3AiOS15 1 3 1 3 1 3 

20 2 2AiOS20 2 4 2 4 2 4 
3 3AiOS20 1 3 2 4 1.1 3.1 

25 2 2AiOS25 3 5 3 6 3 5.1 
3 3AiOS25 2 4 2 6 2 4.9 

30 2 2AiOS30 3 5 3 5 3 5 
3 3AiOS30 2 5 2 6 2 5.6 

3 

10 2 2AiOS10 1 1 1 1 1 1 
3 3AiOS10 1 1 1 1 1 1 

15 2 2AiOS15 1 2 1 2 1 2 
3 3AiOS15 1 2 1 2 1 2 

20 2 2AiOS20 2 3 2 3 2 3 
3 3AiOS20 1 3 1 3 1 3 

25 2 2AiOS25 2 4 2 4 2 4 
3 3AiOS25 1 3 2 4 1.5 3.5 

30 2 2AiOS30 2 4 2 4 2 4 
3 3AiOS30 2 4 2 5 2 4.4 

4 

10 2 2AiOS10 1 2 1 2 1 2 
3 3AiOS10 1 2 1 2 1 2 

15 2 2AiOS15 2 3 2 3 2 3 
3 3AiOS15 1 3 1 3 1 3 

20 2 2AiOS20 2 4 2 4 2 4 
3 3AiOS20 1 3 2 4 1.3 3.3 

25 2 2AiOS25 3 5 3 5 3 5 
3 3AiOS25 2 4 2 5 2 4.3 

30 2 2AiOS30 3 6 3 6 3 6 
3 3AiOS30 2 5 2 5 2 5 

5 

10 2 2AiOS10 1 1 1 1 1 1 
3 3AiOS10 1 1 1 1 1 1 

15 2 2AiOS15 1 2 1 2 1 2 
3 3AiOS15 1 2 1 2 1 2 

20 2 2AiOS20 2 3 2 3 2 3 
3 3AiOS20 1 3 1 3 1 3 

25 2 2AiOS25 2 4 2 4 2 4 
3 3AiOS25 1 3 2 4 1.4 3.4 

30 2 2AiOS30 2 4 2 4 2 4 
3 3AiOS30 2 4 2 5 2 4.1 
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4. Conclusion 
 
In this paper, we show that a Hyper-Heuristics based GA reaches the same global optimal as the solutions in the 
mathematical model for solving shorter planning horizon (i.e. 10 and 15 day planning horizon), but with a significant 
decrease in computational time. We also demonstrated the use adaptive length chromosome to solve longer planning 
horizon. In this method, three assignments in one step (3AiOS--) mostly get better solutions and lower minimum total 
number of assignments than the two assignments (2AiOS--). However, they cost longer running time. These successful 
results indicates that the method can be applied to larger test problems (i.e. longer planning horizon or modeling more 
ports, ships or/and products to be served). Moreover, the flexibility to add strategies means the method can be further 
extended to adapt to the various features of the problems. 
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