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Abstract 

Models are abstractions of reality expressed in mathematical terms. Abstraction simplifies the underlying 
process and phenomenon being investigated. Model risk arises when the abstraction process is 
inappropriate as a result of data used or model selected. Model risk poses a problem for any organisation 
that relies on models to perform tasks and making decisions. The presence of model risk has resulted in 
the development of model validation techniques to detect inappropriate models. Model validation 
techniques, such as k -fold cross-validation, has been widely adopted for statistical models and machine 
learning models. With the advances of newer models such as AI, deep learning and esoteric machine 
learning techniques, there is a need to develop the appropriate model validation techniques to manage this 
risk. In this paper, we discuss the philosophical issues for model validation and model limitations. 
Through this discussion, we hope to provide possible solutions to tackle model risk as well as general 
principles to tackle model risk in the situation where there are no precedents. 
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Introduction 

Mathematical Models are found in many organisations across industries such as logistics, banking and even 
government. These models are built as an aid to the organisation to enable them to measure, predict and guide their 
expectations and next course of action. Depending on the industry, some organisations may adapt mathematical 
models in different parts of the business. With the advances in Computer science, Analytics and Data science, 
coupled with technological innovations and improvements, more organisations are deploying mathematical models 
to gain competitive advantages. 

However, this widespread application of mathematical modeling without careful management and consideration can 
be a risky proposition. Organisations in pharmaceuticals, material manufacturing and financial institutions are the 
first few organisations to adopt mathematical modeling and they have experienced the dangers of applying 
mathematical models. Clinical trials failure, material fatigue failures and credit risk crises are just some of the many 
dangers that arises as a result of model misspecification. This model misspecification is also otherwise known as 
model risk. 
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The recognition of model risk is one of the significant developments in recent history. There are good motivations 
for recognising models’ risk or the blind belief in mathematical models that are poorly defined. Bad models were 
significant contributors to financial crises, aeronautical disaster and engineering failures. Memorable examples like 
the structured credit products and their role in the 2008 Global Financial Crisis and misunderstanding of the O-ring 
failure model in the Challenger disaster reminds modellers of the inherent dangers of over-reliance on a model that 
are not grounded in reality. The blind faith in the mathematical models used in Wall Street which led to the 2008 
Global Financial Crisis is criticised in a special article by Wired Magazine (Salmon, 2009). The disconnection 
between mathematical model and reality in the Challenger Disaster is also highlighted Richard Feynman in a 
memorable quote below from the Roger Commission report (Feynman, 1986). 

 

“For a successful technology, reality must take precedence over public relations, for nature cannot be fooled.” - 
Richard Feynman, 1986 

 

Mathematical models used in physical sciences, fortunately, are grounded in reality and when the models do not 
actually describe the reality, they are quickly superseded and disposed of in favour of those that are more accurate 
and plausible. However, models used in non-physical science such as psychology and economics are susceptible to 
deviation from reality. This natural susceptibility lies in the nature of the data. In the case of physical sciences, the 
data are generally collected from experiments or through observations of physical systems. Experiments are 
generally pre-defined and well-designed to ensure proper and accurate data collection. Even in the case of 
observational studies, there are usually proper design to ensure accurate data collection. In psychology, marketing, 
finance and economics, the data collected are expressed outcome and not entirely controllable or testable. This 
presents situation where the data collected may not be accurate and not measuring the right outcomes. When the 
model is built on these data, the abstraction of the model will be inappropriate.  

In physical sciences, most mathematical models are pre-conceived or formulated before being verified or validated 
using the data. The models are usually quite simple and can be expressed in simple hypothetical terms. Even in the 
case of more complicated models, there are usually pre-defined models which are then tested using more complex 
methodologies. However, there are situations where it is impossible to pre-conceive a mathematical model. In these 
cases, mathematical models are built to fit the data in such a way to explain the relationships in the data. Such 
models are prone to misspecifications as the model is determined by the data and not necessarily validated as the 
appropriate model. Even when validated by an independent data set, the model may not have captured the 
underlying relationships accurately and can be invalidated by another data set. This uncertainty in the model 
structure forms an important aspect of model risk. 

Any mathematical model depends on the underlying modelling assumptions. When there are violations of these 
assumptions or unexpected deviations, the mathematical will be susceptible to model misspecification or model risk. 
Most mathematical model assumptions relate to distributions and nature of data such as data symmetry and data 
point correlation. While these assumptions are important, most of the models ignore the information sufficiency 
assumption. Even in the case of big data, most practitioners building mathematical models do not attempt to 
determine whether the data used is sufficient for the model developed. The lack of concern for data sufficiency 
presents a dilemma where it is uncertain how much of the predictive or explanatory power of the model is 
determined by a small amount of data points. The other issue is the gap between the model assumptions and the 
reality. Most practitioners apply the models knowing the gap but believes that the assumptions have been proven or 
is not applicable to the case (Wasserman, 2015). 

In the next section, we will discuss about the history of model risk primarily in the banking industry and how 
various organisations manage model risks. For the third section, we discuss about the inherent limitations of models. 
In the fourth section, the discussion will be tuned to solutions to the various types of model limitation. The last 
section will be the conclusion. 
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History of model risk management 

 

Mathematical models have long been in use in large financial institutions globally (Jorion, 2006) especially for 
investment banks dabbling in financial instruments. As a general rule, the formality and comprehensiveness of the 
model risk management process is proportional to the complexity of the model. In the pre-2000s period, there was a 
proliferation of mathematical model use which led to a gradual recognition of the corresponding need for model risk 
management as a result of the LTCM debacle (Jorion, 2006). This period saw the establishment of mathematical 
model use as the decision support tool in various areas of banking such as valuation, credit evaluation, risk 
measurement. To tackle the various challenges in the applying mathematical models across different areas, there is 
an increasing need to customise or develop new models that led to an increase in complexity of models.  

The first formal article on model risk management appeared in 2000 by OCC as the bulletin OCC 2000-16. The 
article is perhaps the first attempt at formalising model risk management practices, the need for such management 
and what are the possible approaches. The article highlighted many key issues with mathematical models such as the 
impact of errors, eliminating wrongful application of models, importance of appropriate training and the need for 
independent audits. Many principles listed were already adopted as part of the traditional model management 
process in other industries. The comprehensive list of principles, steps and processes were then adapted by the Basel 
Committee as part of the model validation requirements for internal models that forms the core of the “Basel II” 
risk-based capital requirements.  

The formal adoption of model validation in the regulatory requirements forces the financial institutions to implement 
model validation. This marks the second period of model risk management between the release of the documents in 
2000 to the end of the Global Financial Crisis (early 2010s). The period is marked by the proliferation of complex 
credit instruments through securitization. The eventual failure of these instrument is the result of the lack of 
understanding of the structure of these products. The underlying valuation models for these products relies on 
several core assumption which resulted in an assessment of the riskiness relied on key assumptions that will produce 
dramatically different results under moderate assumption violations. The ‘Gaussian copula function’, commonly 
attributed to David Li, is one such model. It’s simplicity and ease of application to an otherwise complicated product 
drives the widespread adoption in the industry despite serious warning from Li and other researches (Duffie, 2007; 
Salmon, 2009).  

The post Global Financial Crisis (post 2010s) period marks the advancement of model risk management into a 
systematic and comprehensive approach that extends beyond the pure mathematical aspects into governance and 
practices. The crisis revealed the widespread failures of risk management practices and economic capital models 
under stressful conditions. To prevent these recurrences, new regulatory acts are put in place with stringent and 
robust risk management tests required from the banks. The SCAP (Supervisory Capital Assessment Program) and 
CCAR programs are the two major risk management programs required for US Banks. Other regulators initiated 
their own version of the program to manage the risk of the banks as well.   

With both SCAP and CCAR, capital regulation is focused on the approval of appropriate capital levels determined 
through the use stress test models. Both programs expanded the amount of data used from traditional sources such as 
balance sheet exposures to accounts, income statement changes, economic indicators and market information. Due 
to the complexities of CCAR reporting needs, there are many modeled outputs required. The models are subjected to 
a comprehensive and robust model risk management regime where model validation is merely a small portion of it. 
Building models is a resource intensive effort across an extended period of time.  

The improvement in the risk management regime was reflected by the issuance of a joint Supervisory Guidance on 
Model Risk Management by both the Federal Reserve and the OCC (2011). This approach towards model risk 
management, defined in the guidance, is a vast improvement to the prior practices by recognizing the nature of 
mathematical models as an abstraction of reality which embodies various types of risks. To tackle the risk involved, 
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there is a need for a sound model risk management framework. The guidance recognises that modeling is a process 
and should be viewed as a “life-cycle”, from the preliminary business need, model development, testing and 
validation, system implementation, regular monitoring and maintenance before retiring the model. Beyond the 
various steps in modeling, the framework also incorporates infrastructure, management review and board 
governance. 

Since the great financial crisis, the industry is experiencing a new renaissance in applying machine learning and 
artificial intelligence to banking problem. The industry has been aggressively pursuing the active applications of 
these models to tackle fraud risk, credit risk, market risk amongst others. These models are complicated and 
generally black box models. This leads to complications when dealing with model validation. In the next section, we 
will discuss about the inherent limitation of models generally. 

General Limitation of Models 
Model creation involves the completion of a series of procedures which differs subjected to the kind of models 
involved. Model creation begins when the modeler first attempts to understand the key components and context of 
the real-world situation. After the appropriate familiarisation with the components, purpose and context of the 
situation, the modeler will determine the information requirements and assess the data available for modeling. With 
the right data available, the modeler will begin testing the underlying hypotheses and sub models of the full model. 
If the hypotheses and sub models are significant or operates well, they will be combined to develop the actual 
model. As the sub models are combined with various permutations, data about the model are collected and assessed 
for unusual anomalies. Once the modeler is satisfied with the model, the model will be tested for its validity which 
involves testing the model’s ability to reproduce historical results or new data with known results in terms of its 
accuracy. Once this has been done, the model is put into use. The entire process seems relatively straightforward but 
it is usually not the case. We will examine the major limitations of the modeling process.  

 

Limitation 1: Every single model is the result of a series of human judgement. 

 

Even though each step in the modeling process seems mechanical and straight forward, every single step requires 
human judgment. Mathematical abstraction of the real-world situation is fraught with difficulties. This is 
compounded by data quality issues. Determining the sub models and hypotheses optimality are non-trivial processes 
which becomes even more complicated when the information are combined to develop the full model. Human bias 
and implicit assumptions are built into the model at every juncture. Even for fully automated model building 
processes that involves Artificial Intelligence (AI), human biases and judgements are present in the AI which are 
inputs to the model as the necessary judgments are made at various steps. Judgments which are necessarily human in 
origin are inherent limitations. Thus, the use of any model must be accompanied by a detailed examination of the 
judgments and decisions associated with the creation of the model and how they influence the nature of the model. 
Explicit and thorough documentations are required to ensure proper understanding of the model for the model users. 
 
Limitation 2. Models are limited representation of the real world.  
 

All models are a form of abstractions of reality. Any real-world system/situation is highly complicated and contain 
numerous interrelated elements. Any modelers creating a reasonable version of the system will have to capture the 
critical components and relationships that simulate the real world system as closely as possible. Any attempt to 
abstract a sufficiently complex system will virtually be guaranteed to leave out some components either due to the 
perceived lack of importance or lack of measurements. When important components are left out of the model, the 
model might fail in certain situation as it does not contain the critical components.   
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Limitation 3. All Models Assume the Future will be Like the Past.   
 

Most models are created using historical data to reflect a system that captures the information that has happened in 
the past. These models are very good at explaining what has happened in the past and intrapolate results based 
historical inputs. Unfortunately, most models are used to forecast future results based on future inputs. The models 
assume that the relations that are found based on historical data will remain the same in the future. This is of course 
an illusion. Any real-world system is susceptible to change that renders the model useless. The Global Financial 
Crisis in 2008 is a fine example of this. 

 
Limitation 4. Data Issues  

 
All mathematical models are the expression of the data used. This implies that should the data be compromised in 
any way, the mathematical model will also be compromised. The assumptions behind the data and how it is being 
obtained is important to the integrity of the model. There are multiple possible issues with data and in the era of big 
data, the problem is even more pronounced. Even though factors such as volume, velocity and variety are commonly 
cited, in modeling, veracity and validity of the data are more important and have far reaching implications for the 
use of the model.    

 
Limitation 5. The Developmental History of a Model may be Unclear  

 
Unlike the other limitations which are obvious, unclear model development history can be an odd limitation. 
Modelers frequently change and update their models to improve the accuracy of the model. There are many ways to 
update the model such as changing the inputs, adjusting the seed among many other techniques. These changes are 
often not included and does not provide information about the steps and alternatives explored by the modeler. 
Without these details, it is difficult for any modelers to independently check the process and pin point possible 
lapses in the development process. 

 

Limitation 6. The Applicability of a Model is Limited by its intended objective  
 

A model is developed for a particular purpose and objective. It is important that the model should only be used for 
that purpose. If the model is used for other purposes, its effectiveness and validity will be questionable. There are 
two major reasons why the application of the model outside of its intended use can be problematic. The first reason 
is the definition of the target variable that is used in the model. Unless the definitions are aligned, the model will not 
be measuring the same item and the interpretation of the results will be inappropriate. The second reason is that the 
underlying sub models and relations might be modeled using data from a different source than the one used for this. 
This implies that future data acting as inputs for this model might be different in nature and the measurement is 
different. Due to this, the predicted results will likely to be inappropriate for the new purpose. 
 

Limitation 7. Model predictions are generally not deterministic, they are probabilistic.  
 

Most model predictions appear precise and specific. However, the results are usually in terms of probability. It is 
important for any users to recognise that the model results are probabilities. Very often, the prediction is bounded by 
confidence bands. The most common measure of accuracy do not incorporate the confidence bound analysis. This 
makes it difficult to assess the accuracy of the model. Some of the new modeling techniques do not lend well to 
confidence band calculations. This can lead to wrong assessment of the model accuracy. 
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In the light of the limitations of mathematical models, it is important to tackle model risk by addressing the 
limitations and set up the appropriate measures and techniques to determine the model risk. Any model validation 
techniques must address the issues created by the limitations of modeling. The next section will address each 
limitation with existing model validation techniques and measurements. 

 

Overcoming model limitations 

 
Over the years, the banking industry has developed many approaches to tackle model risk through validation and 
audit processes (Sudjianto, 2017; Chang, 2016). Most approaches focused on the quantitative validation of the 
model which is affected by limitation 6. In this section, we will review each limitation and review what the current 
and possible approaches is to tackle the risk of the limitation.  

 

Solution to limitation 1: Every model requires inputs and judgement from multiple modelers through collaborative 
work. 

 

In the programming world, many developers have started doing pair coding/programming where a pair of 
developers will switch roles between programmer and auditor. This process is very useful as it enables both parties 
to code and review the program to ensure the quality and functionality of the code. In this way, the code is 
developed using the judgement of two individual simultaneously for a single project. 

A similar concept can be extended to Modeling as well. However, pair modeling is a difficult process as the 
modelers might have different background and experience in building model. The other major pitfall is the need to 
come to a decision on the preferred approach and a considered judgement. To alleviate this shortcoming, it is better 
to have collaborative modeling. Collaborative modeling can be done in a small team where various team members 
work together to complete the model. The team can split into smaller team of odd numbers to perform the modeling 
tasks. There are also two approaches to this collaborative modeling approach - competitive approach or consensus 
approach.  

Competitive approach encourages the various team members to tackle the problem individually with a model 
performance and validity measurement proposed by each member. The proposed measurement ensures that the 
various team member’s core guiding metric is evaluated with others. By restricting to a single measurement, we 
ensure that only the most important and relevant metric used by the modeler in their decision process is proposed. 
Each member of the team will develop their own version of the model and then evaluate the models via the metrics. 
The optimal model will be determined as the one that has majority of the metrics voting it as the top model. The 
various team members will then review the champion model development process for any flaws. If there are no 
issues, then the model will be accepted. For cases where there are minor issues, the changes will be recommended 
by the team members which will then be implemented, and the metrics re-evaluated. Should the model still emerge 
as the champion, it will then be accepted. Otherwise the new champion model will be evaluated through this 
process. 

Consensus approach is very different from the competitive approach. As opposed to individual members of the team 
coming up with their own best version of the model, all the team members will work and review the models building 
process simultaneously. At every single steps, the various team members will cooperate and work with one another 
to come up with new suggestions and possibilities for the models. The team members will iterate the process until 
all members accepts the results. This iteration to consensus is then repeated across the modeling process until the 
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model is implemented.  

 

Solution to limitation 2. Through constant updates and experimentations, models can become comprehensive 
representations of the real world. 

 

Any model is ultimately a snapshot of the real world (Federal reserve, 2011). This is due to the fact that the model is 
built on a single sample of data taken from a population in a specific geography within a specific time range. The 
limited information makes it difficult for the model to be comprehensive even with multiple modelers working on it.  

 

To create a comprehensive representation of the real world, there are two approaches that can be used. The first 
approach is to rebuild the model across multiple time periods with different demographic attributes. As we rebuild 
the model across multiple time periods with different demographic attributes, the model’s core attributes will be 
reviewed, and the estimates reevaluated. The changes will be considered and used to determine what are the 
attributes that are changing and how much changes are there to the estimates. Depending on the type of model, there 
are specific reviews and tests to determine whether the model is different from the previous iteration. This approach 
is very suitable for a model used in a relatively static environment across multiple time periods. 

 

The second approach is more suitable for the scenario where the environment is very volatile or dynamic. Models 
generally suffers from dislocation from reality because it contains relationships which do not adhere or explain the 
reality. In science, the modeling process involves the use of experimentations to collect information which tests the 
model. For the volatile environment, the model can be tested using a small sample of data that evaluates the ability 
of the model to explain the outcome. Due to the dynamic environment, the data sets are varied and do well to test the 
model in various circumstances. Should the model prove to be robust under such conditions, it can be said to be 
representative of the environment.  

 

Solution to limitation 3. Testing the model with unseen inputs and validate the outcome to estimate the ability of the 
model to cope with major changes.  

 

Unlike the second approach for limitation 2, the solution to limitation 3 is to test the model with unseen inputs that 
has never appeared in the data to test the model. This is to actually test the model’s ability to produce reasonable 
results when given data that is totally unexpected under normal circumstances. The model is also tested to ensure 
that it does not bend the rules of reality under abnormal circumstances. 

 

Solution to limitation 4. Data uncertainty should be a major measurement in the modeling process.  

 

Data quality will be a major issue in any modeling process as it is the main ingredient for any models. While most 
modeling case study attempt to understand the impact of data in terms of its validity and reliability, both concepts 
are not practical in real world systems where the measurements are prone to errors and collection issues. Due to this, 
it would be better to assume that the data quality is compromised and create some form of data uncertainty metrics 
(Walker et. Al., 2003) that measures the quality of the model with respect to data. After all, a model built based on 
useless data is ultimately useless.  

In Walker et. Al. (2003), the authors proposed two categories of uncertainty for data. The first uncertainty refers to 
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the uncertainty of the system that generates the data. The second uncertainty refers to the uncertainty of data being 
driven by external factors. Both cases of uncertainty present the problem of veracity and validity and requires proper 
measures to evaluate their impact.  

The first uncertainty is easier to solve as it involves the way the system captures information. To measure the 
uncertainty, pre-programmed scenarios are inserted into the system with known results. The output of the system 
will then be tested for its accuracy. By testing the various inputs from various systems, we can develop a metric that 
measures the deviation from expectation for all the inputs to the model that acts as a proxy to the uncertainty of the 
input data.  

The second uncertainty remains elusive to measure. The inputs to the internal system are derived from systems 
external to the organisation. Some of these systems are not controllable and represent market forces. Thus, 
measuring the uncertainty requires use of proxy and measuring the variability of the data that is coming into the 
system. One possible way is to measure the inherent level of data variability in the inputs from the external system 
which is compared to other time periods. The comparison enables us to see how much data shift happens in the 
system and whether the level of variability in the data changes. By measuring these changes, this provides a measure 
of impact of external environment on the data coming into the internal system. 

 

Solution to limitation 5. Model development history should be recorded automatically.  

 

Recording the model development history in an automated manner is a very simple task with the current level of 
collaborative technology. By using the appropriate modeling system, the model development history can be captured 
easily and reviewed when needed.  

 

Solution to limitation 6. Comprehensive model validity measurements under epistemic uncertainty.  

 

The most difficult aspect of model validation is to identify the model risk under epistemic uncertainty where the user 
has no idea about the structure of the model and the relationships between the inputs. In recent research papers 
(Deng, Yu and Deng, 2018), there have been moves towards the use of Dempster-Shafer Theory of Evidence to 
develop quantitative measurement of model uncertainty.  

 

Solution to limitation 7. Appropriate probabilistic interpretation rather than simple classifications results 

 

The solution is difficult in some scenario as not all models are developed with probabilities in mind. To solve this, 
modelers has to actually compute the probabilities of their forecasts and predictions. This can also be solved through 
the use of software that compute the values automatically. 

 

Conclusion and Future Direction 

 
Through the discussion about the history of model risk management, we have reviewed all the events leading up to 
modern day model risk management practices and challenges. We have discussed in depth of the general limitation 
of mathematical models and how they impact the accuracy and validity of the models used in risk management. 
With the relevant solution and measurements reviewed, we hope that risk managers can benefit from this discussion 

2080



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

and provide new directions to tackle model risk issues. 
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