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Abstract

A three unit series parallel system is considered. How the introduction of realistic assumptions
in the model complicates the behaviour of the system leading to the identification of its under-
lying behaviour as a Renewal process, Alternating renewal Process, Markov Process, Markov
Renewal Process, Semi Markov Processes and a Regenerative Stochastic Processes is explained.
Some of the system measures are obtained in each of these cases.

1 Basic System

We consider a system consisting of 3 units in which 2 units Unit 2 and Unit 3 are connected in parallel and

this parallel system is connected in series with Unit 1 as shown in Figure 1.
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Figure 1: Birolini (1971)

2 Model 1 - RENEWAL PROCESS

First we consider the system with the following assumptions

2.1 Assumptions

1. All the three units are statistically independent and identical and have the same failure rate (FR) A\. When
a unit fails it is instantaneously replaced with a similar new unit.

2.2 Analysis

We are interested in finding the number of replacements in the time interval (0, ¢]. We note that the under-
lying Stochastic Process is a Renewal Process with the pdf of the interval between two successive renewals

1
(replacements) having an exponential distribution with mean 3—)\.The renewal function is given by 3\t.

2.3 Assumptions

1. The life time (LT)of Unit 1 is a random variable X with an arbitrary distribution having pdf f(.) .Unit 2
and Unit 3 are statistically independent and identical and have the same failure rate A

2. When Unit 1 fails it is instantaneously taken up for repair and the repair time (RT) is a random variable
Y with an arbitrary distribution having pdf ¢(.). When Unit2 and Unit 3 fail they are instantaneously
replaced with a similar new unit.

2.4 Analysis

We are interested in the availability of the system. Since Unit 2 and Unit 3 are instantaneously replaced
they can be considered as available at all times and the availability of the system is determined by the
availability of Unit 1 alone . Let Fy denote the event that Unit 1 is just online and E; the event that repair
just commences for Unit 1. Then we note that Ey and E; occur alternately and constitute an renewal process.
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Let Z(t) denote the state of the system ( 0 operable and 1 failed) at time ¢. Define A;(t) =Pr { Z(¢t) = 0|E;
att = 0},7 = 0, 1 Then using probabilistic arguments we derive the following equation:

Ao(t) = F(t) + Y _{f(t)0g(t)} W OF (1)

The steady state availability of the system defined as

Aso = lim Ao(t) = lim Ay(1)

is given by
E(X)
A =
* EB(X)+E(Y)
Special cases: Let f(t) = Ae * and g(t) = pe™H
Then n
. s+ 4
A —
0(s) s(s+ A+ p)
17 A Ot
t _r H
o(?) At A+p
and ) B(X)
Aoo _ [ A _
Ap s+ BX+Y)

3 MODEL 2 - ALTERNATING RENEWAL PROCESS

3.1 Assumptions

1. The life time (LT)of Unit 1 is a random variable X with an arbitrary distribution having pdf f(.) .Unit 2
and Unit 3 are statistically independent and identical and have the same failure rate A

2. When Unit 1 fails it is instantaneously taken up for repair and the repair time (RT) is a random variable
Y with an arbitrary distribution having pdf ¢(.). When Unit2 and Unit 3 fail they are instantaneously
replaced with a similar new unit.

3.2 Analysis

We are interested in the availability of the system. Since Unit 2 and Unit 3 are instantaneously replaced
they can be considered as available at all times and the availability of the system is determined by the
availability of Unit 1 alone . Let Ey denote the event that Unit 1 is just online and £ the event that repair
just commences for Unit 1. Then we note that Ey and E; occur alternately and constitute an renewal process.
Let Z(t) denote the state of the system ( 0 operable and 1 failed) at time ¢. Define A;(t) =Pr{ Z(¢) = 0|E;
att = 0},¢ = 0,1 Then using probabilistic arguments we derive the following equation:

Ao(t) = F(t) + Y _{f(t)0g(t)} M OF (1)

The steady state availability of the system defined as

©IEOM Society International

2085



Proceedings of the International Conference on Industrial Engineering and Operations Management
Bangkok, Thailand, March 5-7, 2019

is given by
E(X)
As =
E(X)+ E(Y)
Special cases: Let f(t) = Ae > and g(t) = pe
Then n
. s+
A =
0(s) s(s+ A+ p)
H A Ot
Ag(t) = —H— 4 2O
o(?) A4 p + A+ ue
and

_ _ 5 E(X)
Adp ++1 BX+Y)

4 MODEL 3 - MARKOV PROCESS

4.1 Assumptions

1. Unit 2 and Unit 3 are statistically identical

2. The failure rate of Unit 1 is A;. Unit 2 and Unit 3 have the same failure rate A\,

3. There is a single repair facility and the repair rate of Unit 1 is pq and that of Unit 2 and Unit 3 is po.
Preemptive priority is followed for the repair of Unit 1.

4. Operable units cannot fail when the system is in the down state.

4.2 Notation

The state of the system Z (¢) at any time ¢ is is represented by the two component vector process (X (), Y (¢))
where the first component X (¢) represents the state of Unit 1 with 0 and 1 respectively denoting the operable
and failed state of Unit 1. The second component Y (¢) represents the number of failed units in the parallel
system consisting of Unit 2 and Unit 3. The set of all possible states is given by

{(0,0),(0,1),(0,2),(1,0), (1,1),(1,2)}

By the assumption 4 of the model it follows that the system cannot enter the state (1, 2)

4.3 Reliability Analysis

Since the failure and the repair rates are constants Z(t) is a Markov process with state space

S = {(0’ 0)7 (07 1)’ (07 2)7 (170)7 (17 1)}

We can write

S=SyuUsSp
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where Sy = {(0,0), (0,1)} and Sp = {(0,2), (1,0),(1,1)}. Sy corresponds to system up states and Sp
that of down states. Define P;; 1 (t) = Pr{Z(t) = (k,l), Z(u) # (m,n)Yu € (0, 1],
SplZ(0) = (i,5)}  (i,4), (k,1) € Sy Using probabilistic arguments we derive the following equations:

ﬁoo,oo(t) = e_()\1+2>\2)t =+ 2)\26_(A1+2)\2)t©ﬁ01700(t) (1)

1301,00(@ = M22)\26_(’\1+A2+”2)t©1600,00(t) (2)
Talking Laplace transforms and then solving the equations (1) and (2) we get

S+ A1+ Ao+ p2

ﬁgo,oo(s) = Bl (3)

where
Bl = 82 + 5(2)\1 + 3)\2 + H2) + )\1()\1 + )\2 + ,U,Q) + 2)\2()\1 + )\2)

Probabilistic arguments lead to the derivation of the following equations:
Poo,o1(t) = 2Age” MFPQPy; o4 (1) (4)
1501,01(15) = e~ Cit2atua)t | uzef(’\l+2’\2+#2)t©ﬁoo,01(t) (5)
Talking Laplace transforms and then solving the equations (4) and (5) we get

~. s+ 2\
Foo,o1(s) = Bl (6)

Define R(t) = Pr{System is up in (0,¢]|X(0) = (0,0)} Then R(t) is the reliability of the system and is
given by _ ~

R(t) = Poo,00(t) + Poo,01(t)
4.4 Mean time to System Failure

The mean time to system failure is given by
R*(0) = Py,00(0) + Po 01(0)

— A1 4342
A1 (A1 +Fda+p2)+2 2 (A1+A2)
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4.5 Availability Analysis

Define Pz‘j}kl(t) = PT‘{Z(t) = (k,l)lZ(O) = (Z,])} (i,j), (k’,l) es

0,0) ] (1,0)
(0,1) 1 ‘ (1,1)
(0.2)

Figure 2

4.6 Steady state Analysis
Define
Pij = lim Py q5(t)

Using the principle of flow balance and the transition diagram given in Fig.2 we derive the following equa-
tions for P;;
(A1 +2X2) = p1 Pro + paPor

(A1 + A2+ p2) Por = 2A2Poo + p11 P11 + p2 Poz
p1Pro = A1 FPoo
pa P = A1 P
p2Po2 + A2 Po

Solving these equation along with the equation
Poo + Por + Pio + P+ Ppa = 1
we get Pog = p1 3/ B2 and Py; = 2o j12/ B2 where
B2 = iy pi3 + 2Xop1piz + 2\ Ao iz + 20103
and the Steady state availability A, is given by

Aco = Poo + Po1 = pap2(2Xhe + pe2)/B2
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5 Model 4 - MARKOV RENEWAL PROCESS

5.1 Assumptions

Assumption 3 of the previous model is given below : “There is a single repair facility and the repair rate of
Unit 1 is 1 and that of Unit 2 and Unit 3 is uo. Preemptive priority is followed for the repair of Unit 1.

We modify this assumption as follows : 3. There is a single repair facility and the repair time distribution of
Unit 1 is arbitrary and is taken as ¢(.) The repair rate of Unit 2 and Unit 3 is u2. Preemptive priority is
followed for the repair of Unit 1.

5.2 Analysis

Let 79 = 0,71, --- be the epochs at which the repair for Unit 1 commences. Define Z,, = {1,Y(7,+)}
Then we observe that the stochastic process

(Z,T)={Zp,7an=0,1,2,---}

is a Markov Renewal Process on the state space S = {(1,0),(1,1)} (see Cinlar (1985))The semi-Markov
kernel is defined by

Qi;(t) = iimoP(Z"H =(L,j),t <Tpy1 —™m <t+A|Z, = (1,i))/A,i,j =0,1
—
To derive an expression for the semi-Markov kernel we define the following events and auxiliary functions :
F1¢: repair for Unit 1 commences and both Unit2 and Unit 3 are operable.

FE/y1: repair for Unit 1 commences and Unit 2 (Unit 3) is operable and Unit 3 (Unit 2) is in the failed state.

FE55: Unit 1 is operable and Unit 2 ( Unit 3) fails and Unit 3 (Unit 2 ) is in the failed state.

Define fOO,lO(t) = limA_>0 P(Eloin (t, t+ A), N(Elo, ) = O ( ,t) = 0|

Z(O) (0,0))/A f()o 11( ) :limA_m P(Enin (t,t+A),N(E10, ) :O,N(Ell,t) —O|
Z(0) = (0,0))/A for.10(t) = lima_yo P(Exoin (t,t + A), N(E1g,t) = 0, N(E1,t) = 0|
Z(O) = (07 1))/A fOO,ll( ) = limAHO P(Ellil’l (t,t—|- A), N(E107 ) = 0, N(Elht) = 0|
Z(0) = (0,1))/A

Using probabilistic arguments we derive the following equations:
foo.10(t) = Ae™ P2t At Loy, o= (Retdtef,, 14(1)

foo11(t) = Ape” R TAIO 4 14y + 2X0e” FR2TAIQ fo 14 (t)

for,10(t) = Age™ MR t12lQuye =2t fyy 1o(t) + poe™ M A2 RQ fy (1)

fora1(t) = Adpe~(atAatua)t
+>\267(>\1+>\2+M2)t©/.1,267“2t©f01711(t) + M267(A1+A2+M2)t©f()(],11(t)
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5.3 The semi Markov kernel

The semi-Markov kernel is given by

Qij(t) = g(t)Of0;15(t), 4,j=0,1

Using the Theory of Markov Renewal Process we obtain an expression for the Markov Renewal function.
The stochastic Process { Z(t);t > 0} is a Semi-Regenerative (Cinlar(1985)) Process with the Markov
Renewal Process (Z,T) embedded in it. The distribution of Z(t) is defined by

P(ij, kl,t) = P(Z(t) = (k,1)|E;j att = 0), (¢,7), (k,{) € S The availability of the system is given by

A(t)= Y P(00,ij,t)

ijESU

In Model 2 the assumptions are 1. The life time (LT)of Unit 1 is a random variable X with an arbitrary
distribution having pdf f(.) .Unit 2 and Unit 3 are statistically independent and identical and have the same
failure rate A 2. When Unit 1 fails it is instantaneously taken up for repair and the repair time (RT) is a
random variable Y with an arbitrary distribution having pdf ¢(.). When Unit2 and Unit 3 fail they are
instantaneously replaced with a similar new unit. F, and E; respectively denote the events that Unit 1 just
begins to operate and the repair for it just commences. Also let 7o = 0, 71, - - - be the epochs at which any
of the events Ey or E; occur. Define Z,, = {Z(7,+)} Then we observe that the stochastic process

(Z,T)={Zp,,7nn=0,1,2,---}

is a Markov Renewal Process on the state space S = {0, 1}. The stochastic Process {Z(t);t > 0} is a
Semi-Markov Process with the Markov Renewal Process (Z, T') embeded in it. The distribution of Z(t) is
defined by P(i,j,t) = P(Z(t) = j|E; att =0), 4,5 € S and can be easily obtained . The availability of
the system is given by

Ai(t) = P(0,i,t)

Model Unit 1 Unit2 Unit3 Stochastic Process
1 Replacement Replacement Replacement  Renewal Process
upon failure  upon failure  upon failure

2 LT: G Replacement Replacement Alternating
RT: G upon failure  upon failure Renewal
Process
3 FR: \¢ FR: )\ FR: )\, Markov
RR:1y RR:uo RR: 2 Process
4 LT: G FR:)\o FR:)\o Markov
RT: G RR:po RR:po Renewal
Process

LT- Life time RT - Repair time FR- Failure rate RR-Repair rate
Model 2 Semi-Markov Process Model 4 Semi-Regenerative Process
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