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Abstract 

An insurance insurer has a risk of loss. The risk of loss occurs if the insurer must bear claims beyond his ability. 
However, the insurer can reduce this risk by utilizing reinsurance. This paper intends to examine a reinsurance loss 
model developed by Panjer and Willmot in 1992, to process a group of data so as to produce information needed by 
actuaries in making decisions. Here is described the steps that must be implemented, and the calculation process is 
assisted by a computer application program to make it easier. This model is used to meet the need for information on 
the distribution of total claims, premium stop loss and variance for various retention levels. The calculation results 
show this model is the most effective for the number of policies and small benefits. Because the greater the number 
of policies and benefits, the more number of arrays and elements needed in each iteration and computer application 
program. So that it can quickly produce information needed by actuaries to support decision making. 

Keywords 
Risk of loss, reinsurance, premium stop loss, variance, retention level. 

1. Introduction

Risk is the substance of insurance. In fact, an insurer has a risk of loss. This risk of loss occurs if the insurer has to 
bear a claim that exceeds that ability. The risk of an insurance guarantor can be reduced using reinsurance, where 
another insurance guarantor (reinsurer) acts as a guarantor of insurance from an insurance company (the giver 
company) whose origin is at risk, this is called reinsurance (De Pril, 1986; Pacáková and Zapletal, 2013; Goffard 
and Laub, 2017).  

2118

mailto:alit.kartiwa@unpad.ac.id
mailto:alit.kartiwa@unpad.ac.id
mailto:yuyunhidayat@unpad.ac.id
mailto:yuyunhidayat@unpad.ac.id


Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

Reinsurance has many forms, if a reinsurer pays an individual's loss equal to the difference in a limit; this is called 
reinsurance excess of loss (XL). Whereas in the case of stop-loss reinsurance, the reinsurer pays the difference in the 
sum of all claims combined above a limit (Bowers et al., 1997; Chan and Tse, 2017). 
 
However, it is believed that individual risk models need special attention as facts that are widely used in certain 
applications, especially in life and health insurance, and this is more difficult to treat mathematically, even though 
simple models. For this reason, further studies are needed by adding new parameters and variables to the existing 
models, and producing more accurate mathematical models (Burrow and Lang, 1997; Chen, 2013; Turner, et al., 
2017). 
 
This paper aims to conduct a study of adding new parameters and variables into the model, and the results of the 
study were applied to the analysis of case claims data on life insurance. The full discussion is described in the 
following sections. 
 
2. Matematical Model 
 
2.1 Distribution of Panjer Model Total Claims 
 
The model is developed by Panjer (De Pril, 1986), and we will use it to produce a total distribution of claims. 
Suppose a portfolio consists n  risk with a claim probability jq ; nj ,...,2,1=  and total coverage jb ;

nj ,...,2,1= , the probability function of the total claim is given by, 
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the equation can be calculated recursively using partial addition jjj XSS += −1  for nj ,...,2,1= start with

11 XS = . In this case the formula (1) becomes 
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In addition to the Panjer model, the De Pril model (De Pril, 1986) will be used for the distribution of total claims as 
explained in the following sections. 
 
2.2 De Pril Model for [ ]0SE  
 

2119



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

First, we divide the portfolio into sub-portfolios based on policy size and probability of claims (Burrow and Lang, 
1997). Suppose ijn  symbolizes the size of the policy i  (with ri ,...,2,1= ) and probability of claims jq  (with

mj ,...,2,1= ). 
 

 
 

Figure 1. Model De Pril Portfolio Classification 
 
Then, pgf of total claim can be written as 
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The logarithm of pgf is 
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Now, we integrate equation (4) to produce 
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If 1=z , on (5) the average of total claim distribution becomes 
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2.3 Reinsunrance Loss Model 
In this case, the maximum cost incurred by the insurer for the risk of individual loss is d . Therefore, the distribution 
of insurer claims can be described as follows 
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where )(xf X  is probability density of individual losses. Reinsurer will only suffer losses if the difference in 

individual losses exceeds d  and reinsurer losses are as much as the excess against d . Therefore, it is likely that the 
reinsurer will not suffer losses for individual risks 

2120



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

 
).(}Pr{* dFqpdXqpp Xjjjjj +=≤+=                                           (8) 

 
Then, distribution of reinsurer losses to risk - j  is 
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In the case of a collection or stop-loss reinsurance, the reinsurer pays the difference from the sum of all claims 
combined for the risk to exceed a deductible or limit, called stop-loss or attachment value (De Pril, 1986). If the 
distribution of losses is given by )(xfS , 0≥x , then distribution of insurer losses, ),,min( dSS I

d =  is as follows 
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and distribution of reinsurer losses, +−=−= )(}0),max{( dSdSS R

d , is 
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The expected value of the insurer loss is also called the stop-loss premium and evaluated as 
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Because the expectations of reinsurer losses and expectations of insurer losses must be in the total equation of total 
loss expectations, so we have 
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When the stop-loss limit d  increases indefinitely, the insurer costs then become 
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so that the expectations of reinsurer losses (13) can be rewritten as 
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Stop loss reinsurance will be chosen as the type of insurance that will be discussed in the arithmetic loss distribution 
section in the next section. 
 
 
2.4 Arithmetic Loss Distribution 
 
For example something is set at a positive integer value where the measurement unit is very easy, for example 1000 
dollars. If )(xfS  defined only on non-negative integers, then (9), (10) and (11) become 
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For (17), it can be seen that stop-loss premium profits can be calculated recursively as 
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start with ][][ 0 SESE R = . This recursive formula is very easy because the initial value can be calculated directly 
(Burrow and Lang, 1997). 
 
In the same way, it can be shown that the second raw moment can be calculated recursively as 
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Reducing squares (17) from (18) will produce 
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Recursion (20) starts with those produced separately. 
 
 
 3. Case Analysis 
 
The following data groups are secondary data taken from the literature written by Panjer & Willmot (De Pril, 1986) 
on pages 135 and 136 entitled "Insurance Risk Models" as follows: A small-scale manufacturing company has a 
contract for life insurance groups for 14 permanent employees. Actuaries from insurance companies have selected 
the death tables of the Canadian Institute of Actuaries in 1969-1975 to represent the death rates of each employee in 
the group. Each employee is insured for a number of coverage from their salary rounded up to 1000 dollars. The 
data group of the employees is as shown in Table 1 below. 
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Table 1. Life Insurance Group Data 

j employee Ages Gender Benefit (bj) Death Rate (qj) 
1 20 L 15,000 0.00149 
2 23 L 16,000 0.00142 
3 27 L 20,000 0.00128 
4 30 L 28,000 0.00122 
5 31 L 31,000 0.00123 
6 46 L 18,000 0.00353 
7 47 L 26,000 0.00394 
8 49 L 24,000 0.00484 
9 64 P 60,000 0.02182 
10 17 P 14,000 0.00050 
11 22 P 17,000 0.00050 
12 26 P 19,000 0.00054 
13 37 P 30,000 0.00103 
14 55 P 55,000 0.00479 
 Total  373,000  

 
3.1 Determine Distribution of Total Claims 
 
This total claim distribution model was developed by (Panjer and Willmot, 1992; Pavel, 2011; Kunreuther, 2015; 
Vukovic, 2015; Lefèvre, et al., 2018; Sukono, et al., 2018); suppose there is n  risk with probability of claims )( jq  

and the sum of coverage )( jb  for nj ,...,2,1= , then the function of total probability of claims that given by (2) 

will be very useful to determine )(df
jX . 

 
In the simulation of calculating the total distribution of claims, it is determined for value 20,...,2,1,0=d , this 
value is considered sufficient to describe the steps of the formulation in the previous section (Panjer and Willmot, 
1992; Tiller and Fagerberg, 1990). For value of )(

1
df X ; 20,...,2,1,0=d  generated from equation (2) then it will 

be used to determine )(
1

dfS ; 20,...,2,1,0=d  by using equation (3). To determine )(
1

df X ; 20,...,2,1,0=d  

and )(
1

dfS ; 20,...,2,1,0=d used MS-Excel 2000. In Figure 2, the following are shown in steps to get a value

)(
14

df S . 
 

 
 

Figure 2. Distribution Chart of Panjer Model Total Claims 
 
From the data group in Table 1, the value 373000,...,2,1=d is needed, that number is a large number so to do a 
complete calculation, and a computer application program has been built using Delphi 6.0. 
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Now we will enter the calculation process, starting with determining )(
1

df X . On the Table 2 are shown the value 

of )(
1

df X  for 20,...,2,1,0=d , generated from equation (2) as follow: 

 
Table 2. The value of )(

1
df X , for 20,...,2,1,0=d  

  )(
1

df X  

1b  1p  0=d  14,...,3,2,1=d  15=d  20,...,17,16=d  
15 0.99851 0.99851 0 0.00149 0 

 
After getting the values of )(

1
df X , for 20,...,2,1,0=d , the following will be shown the process of calculating the 

total claim distribution or value of )(df
jS  starting with the value 0=d  : 

a) Determining the value of )(df
iS  for 0=d  

 
Table 3. The value of )(df

jS for 0=d  

j bj Formula )0(
jSf  j bj Formula )0(

jSf  

1 15 )0()0(
11 XS ff =  0.998510000 8 24 )0(

78 SfP  0.981198770 

2 16 )0(
12 SfP  0.997092116 9 60 )0(

89 SfP  0.959789013 

3 20 )0(
23 SfP  0.995815838 10 14 )0(

910 SfP  0.959309118 

4 28 )0(
34 SfP  0.994600943 11 17 )0(

1011 SfP  0.958829464 

5 31 )0(
45 SfP  0.993377583 12 19 )0(

1112 SfP  0.958311696 

6 18 )0(
56 SfP  0.989870961 13 30 )0(

1213 SfP  0.957324635 

7 26 )0(
67 SfP  0.985970869 14 55 )0(

1314 SfP  0.952739050 
 

From table 3 generated the value of )(df
iS for 0=d  is 0.95273905. 

b) Determining the value of )(df
jS for 1=d  

 
Table 4. The value of )(df

jS for 1=d  

j bj Formula )1(
jSf  j bj Formula )1(

jSf  

1 15 )1()1(
11 XS ff =  0 8 24 )1(

78 SfP  0 

2 16 
12 SfP (1) 0 9 60 )1(

89 SfP  0 

3 20 )1(
23 SfP  0 10 14 )1(

910 SfP  0 

4 28 )1(
34 SfP  0 11 17 )1(

1011 SfP  0 

5 31 )1(
45 SfP  0 12 19 )1(

1112 SfP  0 

6 18 )1(
56 SfP  0 13 30 )1(

1213 SfP  0 

7 26 )1(
67 SfP  0 14 55 )1(

1314 SfP  0 
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From the above calculation by fulfilling the condition equation (2) a value is generated )(df
iS for 1=d  is 0. 

Referring to the condition of the total claim probability function developed by Panjer and the value of )(
1

df X that 

is shown by table 2 where the value of jbd <  is 0, the intended value bj is the smallest in the data group above, 

i.e. 14. This result in the value of 0)( =df
jS  that applies for 13,...,2,1=d  is 0)( =df

jS . After determining 

the value of )(df
jS  for 20,...,2,1=d , we will also get the value of distribution function )(dFS . 

 
3.2 Determinining Net Stop Loss Premiums 
 
a) Recursive Calculation Method 
To apply the recursive formula using the value jq  and matrix line ijn   not zero, the data group is shown in Table 5. 
as follows: 
 

Table 5. Illustration of value qj and Matrix Line Non-zero ijn
 

  nij 
j 1000qj i = 14 15 16 17 18 19 20 24 26 28 30 31 55 60 

1 0.50 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
2 0.54 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
3 1.03 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
4 1.22 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
5 1.23 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
6 1.28 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
7 1.42 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
8 1.49 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
9 3.53 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

10 3.94 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
11 4.79 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
12 4.84 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
13 21.82 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 
After all the columns are filled correctly and accurately, then we can do the next step which is determining the value

][][ 0 SESE R = . Using equation (6) we determine the value ][SE  that is shown in the following operations and to 
abbreviate the calculation process, we can ignore multiplication operations with a value so that it becomes as 
follows: 
 
 ][SE = 14(0.50)(1)+15(1.49)(1)+16(1.42)(1)+17(0.50)(1)+18(3.53)(1)+19(0.54)(1)+20(1.28)(1)+24(4.84)(1)  
         +26(3.94)(1)+28(1.22)(1)+30(1.03)(1)+31(1.23)(1)+55(4.79)(1)+60(21.82)(1) 

     = 7 + 22.35 + 22.72 + 8.50 + 63.54 + 10.26 + 25.60 + 116.16 + 102.44+ 34.16 + 30.90 + 38.13 
     = 2054.41 
     = 2.05441 (1000 unit) 

 
b) Raw Moment 
 

∑
=

=
14

1

'
1

j
jjbqµ  = 2.05441 
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c) Stop Loss and Variance Net Premiums 
 
Through equation (18) we can determine the stop loss and variance net premium as shown in Table 6. below. 
 

Table 6. Stop Loss Premiums and Variances for Various Stop Loss Levels 
D )(dFS  [ ]R

dSE  [ ]R
dSVar  D )(dFS  [ ]R

dSE  [ ]R
dSVar  

0 0.95273905 2.05441 102.5335632 11 0.95273905 1.53454 64.920907 
1 0.95273905 2.00715 98.6639570 12 0.95273905 1.48728 62.041903 
2 0.95273905 1.95989 94.8844060 13 0.95273905 1.44002 59.554059 
3 0.95273905 1.91263 91.1949100 14 0.95321566 1.39276 56.554059 
4 0.95273905 1.86537 87.5954680 15 0.95463736 1.34597 53.943459 
5 0.95273905 1.81811 84.0860810 16 0.95599217 1.30061 51.416933 
6 0.95273905 1.77084 80.6667480 17 0.95646878 1.25660 48.972259 
7 0.95273905 1.72358 77.3374710 18 0.95984386 1.21307 46.610094 
8 0.95273905 1.67632 74.0982480 19 0.96035862 1.17291 44.319921 
9 0.95273905 1.62906 70.9490790 20 0.96157969 1.13327 42.105154 

10 0.95273905 1.58180 67.8899660     
 
3.3 For Portfolios with 14 policies 
 
a) Number of Arithmetic Operations at Each Iteration 
 
In the Panjer algorithm there are 2 (two) types of arithmetic operations needed, namely: 
• Multiplication operations : minimum 1−n  and maximum )1(2 −n  

• Addition / subtraction operations: minimum = 0 and maximum )1(2 −n  
 
Based on the data group used for analyzing the model, it is known the number of policies = n = 14, so that: 
• Multiplication operations: minimum 1 14 –1 13n − = =  and maximum ( )2( 1) 2 14 –1 2 13 26n − = = × =   

• Addition / subtraction operations : minimum = 0 and maximum ( )2( 1)  2 14 –1   2 13  26n − = = × =  
Total arithmetic operations: minimum 13 and maximum 52. 

 
b) Number of Elements in Array for Next Iteration 
 
Consider Figure 3. below. 
 

 
 

Figure 3. Number of Elements Must Be Stored in the Panjer Algorithm 
 
It takes a number of elements contained in a dashed line that must be stored; this is because the elements needed are 
uncertain so that all the elements produced must be stored. The number of array elements needed is as many as

)1( −+ ndn . 
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So for 1 (one) iteration is needed as many as ( ) ( )1 14   14 1   27+ − =  and maximum 

( )( ) ( )373 14 14 1  5222  13  5235+ − = + =   element. 
 
The number of array elements above is for policies as many as 14 policies which are actually a small amount. 
Suppose the number of policies is 100 times or 1,000 times the number of arrays that must be stored in each iteration 
with this model is certainly very large. 
 
3.4 For Large Size Portfolios 
 
Suppose the data group in Table 2. we modify the number of policies and display them in the form of sub-portfolios 
as in Table 7. below. 
 

 Table 7. Illustration of Portfolio with Amount of Large Policy (1400 policies) 
 

  Nij 
j 1000qj i = 14 15 16 17 18 19 20 24 26 28 30 31 55 60 
1 0.50 100 0 0 100 0 0 0 0 0 0 0 0 0 0 
2 0.54 0 0 0 0 0 100 0 0 0 0 0 0 0 0 
3 1.03 0 0 0 0 0 0 0 0 0 0 100 0 0 0 
4 1.22 0 0 0 0 0 0 0 0 0 100 0 0 0 0 
5 1.23 0 0 0 0 0 0 0 0 0 0 0 100 0 0 
6 1.28 0 0 0 0 0 0 100 0 0 0 0 0 0 0 
7 1.42 0 0 100 0 0 0 0 0 0 0 0 0 0 0 
8 1.49 0 100 0 0 0 0 0 0 0 0 0 0 0 0 
9 3.53 0 0 0 0 100 0 0 0 0 0 0 0 0 0 
10 3.94 0 0 0 0 0 0 0 0 100 0 0 0 0 0 
11 4.79 0 0 0 0 0 0 0 0 0 0 0 0 100 0 
12 4.84 0 0 0 0 0 0 0 100 0 0 0 0 0 0 
13 21.82 0 0 0 0 0 0 0 0 0 0 0 0 0 100 

 
a) Number of Arithmetic Operations at each Iteration 
 
Based on the data group used for analyzing the model, it is known the number of policies = n  = 1400, so that: 
• Multiplication operations: minimum n-1 = 1400 – 1 = 1399  and maximum 2(n-1) =2(1400-1) =2x1399 = 2798.  
• Addition/subtraction operations: minimum = 0 and maximum 2(n-1) =2(1400-1) =2x1399 = 2798. 

Total arithmetic operations: minimum 1399 and maximum 5596. 
 
b) Number of Elements in the Array for next Iteration 
 
The number of array elements needed is as many as )1( −+ ndn . So for 1 (one) iteration is needed as many a 
1(1400) + (1400-1) = 2,799, and maximum (37300)(1400)+(1400-1) = 52,220,000+1,399 = 52,220,399   element 
array. 
 
Based on the analysis above, it can be summarized briefly in a comparison table of the number of arithmetic 
operations and array elements for the number of small and large policies as below. 

 
Table 8. Comparison of the Amount of Arithmetic Operations and Array Elements to the Amount of Policy 

 Data : 14 Policy 
M = 373 

Data 140 Policy 
M = 3730 

Data : 1400 Policy 
M = 37300 

Number of Arithmetic Operations 13 to 52 139 to 556 1,399 to 5,596 
Number of Array Elements 27 to 5,235 279 to 523,599 2,799 to 52,221,399 
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 4. Conclusion 
 
This Panjer and Wilmot (1992) model can be used as an option for actuaries to support important decisions in 
reinsurance. Information generated from this model meets the needs of total claim distribution, stop loss premium 
and variance for various levels of retention. The large number of arithmetic operations and array elements needed in 
each iteration makes this model more efficient and effective for the number of small policies. This is because 
arithmetic operations and the number of elements that must be stored in the array will increase as the number of 
policies increases and the number of benefits we need. The greater the number of policies and benefits of the bj 
involved make the calculation process easier if supported by an adequate computer program and device application. 
This is related to the CPU time needed in the calculation process. 
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