
Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

A New 3-D Chaotic System with Three Nonlinearities, its 
Adaptive Synchronization and Circuit Simulation   

Aceng Sambas 
Department of Mechanical Engineering 

Universitas Muhammadiyah Tasikmalaya 
Tasikmalaya, Indonesia 

acengs@umtas.ac.id  

Sundarapandian Vaidyanathan 
Research and Development Centre 

Vel Tech University 
Chennai, Tamil Nadu, India 

sundarvtu@gmail.com 

Sukono 
Department of Mathematics,  

Faculty of Mathematics and Natural Sciences 
Universitas Padjadjaran, Indonesia. 

sukono@unpad.ac.id 

Subiyanto 
 Department of Marine Science 

Universitas Padjadjaran, Indonesia. 
subiyanto@unpad.ac.id       

Mustafa Mamat 
Faculty of Informatics and Computing 

Universiti Sultan Zainal Abidin  
Kuala Terengganu, Malaysia     

must@unisza.edu.my 

Abdul Talib Bon 
Department of Production and Operations 

University Tun Hussein Onn Malaysia, Malaysia 
talibon@gmail.com 

Abstract 

Chaotic systems deal with nonlinear dynamical systems which are highly sensitive to changes in the 
initial conditions. This paper reports the finding of a new 3-D chaotic system with 3 nonlinearities. The 
phase plots and dynamic analysis of the new chaotic system are described by means of MATLAB plots, 
Lyapunov exponents, etc. The chaotic system has a unique saddle-point equilibrium at the origin. As a 
control application, the adaptive synchronization of the new chaotic system with itself is obtained using 
Lyapunov stability theory. Finally, an electronic circuit of the new chaotic system with MultiSIM is 
designed and a good match between the plots of the theoretical chaotic model and the circuit model is 
obtained. The electronic circuit model validates the new theoretical chaotic model developed in this work.  
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 1. Introduction 
 
Chaos theory deals with chaotic systems which are nonlinear dynamical systems highly sensitive to small changes in 
the initial conditions (Azar and Vaidyanathan, 2016). Chaotic systems are also confirmed by the presence of a 
positive Lyapunov exponent. If the sum of the Lyapunov exponents of the chaotic system is negative, it is classified 
as a dissipative chaotic system (Azar and Vaidyanathan, 2016).  The first dissipative chaotic system with two 
quadratic nonlinearities was discovered by Lorenz (1963), while he was working on a 3-D weather convection 
model (Lorenz, 1963). 
 
Chaos theory has several applications in science and engineering such as memristors (Buscarino et. al., 2012; Sun et. 
al., 2013; Muthuswamy, 2010), weather systems (Lorenz, 1963), biological systems (Vaidyanathan 2015a, 2015b, 
2015c, 2015d, Voorsluijs and Decker, 2016), neural systems (Vaidyanathan 2015e, 2015f, 2015g, 2015h), oscillators 
(Pakiriswamy and Vaidyanathan, 2012; Rasappan and Vaidyanathan, 2012; Vaidyanathan 2012a, 2012b, 2014, 
2015i, 2015j; Vaidyanathan and Rasappan, 2011; Vaidyanathan and Sampath, 2012), chemical reactors 
(Vaidyanathan, 2015k), circuits (Daltzis et al., 2018; Mamat et al., 2018; Pham et al., 2016; Sambas et al., 2018a, 
2018b; Vaidyanathan, 2018a, 2018b, 2018c, 2018d, 2018e), finance (Zhao et al., 2011), robotics (Sambas et al., 
2016; Vaidyanathan et al. 2017), steganography (Vaidyanathan et al., 2018f), cryptography (Murali, 2000; Wu et 
al., 2014), image encryption (Xue et al., 2018), secure communications (Li et al., 2005), etc. 
  
In this work, we describe a new 3-D chaotic system with three nonlinearities – two quadratic nonlinearities and a 
quartic nonlinearity. It is interesting to know that the new chaotic system has a positive Lyapunov exponent 
confirming its chaotic behavior. We show that the new chaotic system has rotation symmetry about the 3x − axis. 
We also show that the new chaotic system has three unstable equilibrium points – a saddle-point equilibrium at the 
origin and two saddle-focus equilibrium points on the 1 3( , )x x − plane.  
 
In Section 2, we give the model of the new chaotic system and analyze the dynamic properties of the new chaotic 
system via phase plots, Lyapunov exponents, Kaplan-Yorke dimension, etc. In Section 3, we describe the adaptive 
synchronization of the new chaotic system with itself via adaptive control method. In Section 4, we present an 
electronic circuit of the new chaotic system via MultiSIM to verify the feasibility of the theoretical model. Our 
simulations show a good match between the MATLAB plots and the MultiSIM simulations of the new chaotic 
system. Finally, Section 5 contains the conclusions of this work. 
  
2. A New 3-D Chaotic System with Three Nonlinearities 
  
In this work, we report a new 3-D system given by the nonlinear dynamics 
  

  
1 2 2 3

2 1 2 1 3
4

3 3 1

x x x x
x x ax x x

x bx x

 = +


= − −
 = − +







         (1) 

 
In (1), 1 2 3( , , )X x x x= is the state and ,a b are constant parameters.  
 
The system (1) has two quadratic nonlinearities and a quartic nonlinearity. 
 
We shall show that the system (1) exhibits a chaotic attractor for the parameter values 
 
 0.6,   0.4a b= =          (2) 
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The Lyapunov exponents of the new system (1) for ( , ) (0.6,0.4)a b = and (0) (0.2,0.2,0.2)X = are calculated for 
510T = seconds using Wolf’s algorithm (Wolf et al., 1985) as follows: 

 
1 2 30.2583,   0,   1.2583LE LE LE= = = −        (3) 

  
From (3), we note that the new 4-D system (1) is chaotic since it has a positive Lyapunov exponent.  
 
Also, the new system (1) is dissipative since the sum of the Lyapunov exponents is negative.  
 
Furthermore, the Kaplan-Yorke dimension of the new system (1) is determined as follows: 
 

1 2

3

2 2.2053
| |KY

LE LED
LE
+

= + =         (4) 

  
We  note that the new chaotic system (1) remains invariant under the change of coordinates given by 
 
 1 2 3 1 2 3( , , ) ( , , )x x x x x x− −         (5) 
  
This shows that the new hyperchaotic system (1) has rotation symmetry about the 3x − coordinate axis. Hence, all 
the non-trivial trajectories of the new chaotic system (1) must have twin trajectories associated with them.  
 
We get the equilibrium points of the new chaotic system (1) by solving the following equations for the  chaotic case 
of the parameters ( , ) (0.6,0.4)a b = : 
 
           2 3(1 ) 0x x+ =         (6a) 
                     1 2 1 3 0x ax x x− − =         (6b) 

                         4
3 1 0bx x− + =           (6c) 

  
Solving the system (6), it is easy to see that the chaotic system (1) has three equilibrium points given as follows: 

0 (0,0,0),E = 1 (0.7953,0,1)E = and 2 ( 0.7953,0,1).E = −  
 
The Jacobian of the new chaotic system (1) for ( , ) (0.6,0.4)a b = at any point 1 2 3( , , )x x x=x is given by 
 

3 2

3 3
3
1

0 1
1 0.6
4 0 0.4

x x
J x x

x

+ 
 = − − − 
 − 

        (7) 

  
The eigenvalues of  0 0( )J J E= are obtained as 1 0.4,λ = − 2  1.3440λ = − and 3 0.7440. λ = This shows that 0E
is a saddle point equilibrium of the new chaotic system (1), which is unstable. The eigenvalues of  1 1( )J J E= are 

obtained as 1 1.9427λ = − and 2,3 0.4714 1.3599 .iλ = ± The eigenvalues of 2 2( )J J E=  are obtained as  

1 1.2776λ = and 2,3 1.1388 1.3612 .iλ = − ±  Thus, 1E  and 2E are saddle-focus equilibrium points of the new 
chaotic system (1), which are unstable. Hence, the strange attractor associated with the new chaotic system (1) is a 
self-excited attractor.  
  
The phase plots of the new hyperchaotic system (1) for (0) (0.2,0.2,0.2)X = and ( , ) (0.6,0.4)a b = are shown in 
Figures 1-3. Also, Figure 4 shows the Lyapunov exponents of the new chaotic system (1).  
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Figure 1. 2-D phase plot of the new chaotic system (1) in the 1 2( , )x x − plane for (0) (0.2,0.2,0.2)X = and  

( , ) (0.6,0.4)a b =  

 
 Figure 2. 2-D phase plot of the new chaotic system (1) in the 2 3( , )x x − plane for (0) (0.2,0.2,0.2)X = and 

( , ) (0.6,0.4)a b =   
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Figure 3. 2-D phase plot of the new chaotic system (1) in the 1 3( , )x x − plane for (0) (0.2,0.2,0.2)X = and  

( , ) (0.6,0.4)a b =  

 
Figure 4. Lyapunov exponents of the new system (1) for (0) (0.2,0.2,0.2)X = and  ( , ) (0.6,0.4)a b =  
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(a)                                                                                        (b) 
 

Figure 5. (a) Bifurcation diagram of system (1) versus the parameter a for b = 0.4 and initial conditions (x(0), y(0), 
z(0)) = (0.2, 0.2, 0.2); (b) Lyapunov spectrum of system (1) when varying the parameter a for for b = 0.4, 

 and initial conditions (x(0), y(0), z(0)) = (0.2, 0.2, 0.2). 
 

 
                                                 
                                                 (a)                                                                                        (b) 
 
Figure 6. (a) Bifurcation diagram of system (1) versus the parameter b for a = 0.6 and initial conditions (x(0), y(0), 
z(0)) = (0.2, 0.2, 0.2); (b) Lyapunov spectrum of system (1) when varying the parameter b for for a = 0.6, 

 and initial conditions (x(0), y(0), z(0)) = (0.2, 0.2, 0.2). 
 
 
The bifurcation diagram and Lyapunov exponents are displayed when changing the value of the bifurcation 
parameter a as reported in Figure 5 (a) and Figure 5(b), respectively. In more detail, in the range a < 0.4, the system 
exhibits periodic behavior. For the value of the parameter 0.4 ≤ a < 1.2, a chaotic behavior is obtained. Also, for the 
value of a ≥ 1.2, system (1) remains always in periodic state. Moreover, dynamical analysis of system (1) has been 
studied by varying the parameter b. Figures 6(a), (b) present the bifurcation diagram and the diagram of Lyapunov 
exponents of system (1), respectively. As shown in Figures 6(a) and Figures 6(b), the system can exhibit periodical 
and chaotic behaviors with different values of the parameter b. 
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3. Global Chaos Synchronization of the New Chaotic Systems by Adaptive Control Method 
  
In this section, we consider the adaptive synchronization of the new chaotic system with itself using adaptive control 
method. 
 
As the master system, we consider the new chaotic system given by   
 

 
1 2 2 3

2 1 2 1 3
4

3 3 1

x x x x
x x ax x x

x bx x

 = +


= − −
 = − +







        (8) 

  
In (8), 1 2 3( , , )X x x x= is the state and ,a b are system parameters which are not available for measurement. 
 
As the slave system, we consider the new chaotic system with controls given by 
 

1 2 2 3 1

2 1 2 1 3 2
4

3 3 1 3

y y y y u
y y ay y y u

y by y u

 = + +


= − − +
 = − + +







       (9) 

 
In (9), 1 2 3( , , )Y y y y= is the state and 1 2 3( , , )u u u=u is the adaptive control using the estimates ( ), ( )A t B t in lieu 
of the unknown system parameters , ,a b respectively. 
 
The synchronization error between the new chaotic systems (8) and (9) is given by 
 

   
1 1 1

2 2 2

3 3 3

e y x
e y x
e y x

= −
 = −
 = −

         (10) 

 
The synchronization error dynamics is obtained as follows: 
 

1 2 2 3 2 3 1

2 1 2 1 3 1 3 2
4 4

3 3 1 1 3

e e y y x x u
e e ae y y x x u

e be y x u

 = + − +


= − − + +
 = − + − +







       (11) 

 
We consider the adaptive control given by  
 

 
1 2 2 3 2 3 1 1

2 1 2 1 3 1 3 2 2
4 4

3 3 1 1 3 3

( )

( )

u e y y x x k e
u e A t e y y x x k e

u B t e y x k e

 = − − + −


= − + + − −
 = − + −

      (12) 

  
In (12), 1 2 3, ,k k k are positive constants and ( ), ( )A t B t are parameter estimates.  
 
We define the parameter estimation error as follows: 
 
   ( ),   ( )a be a A t e b B t= − = −        (13) 
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 Differentiating (13), we obtain the following: 
 

( ),   ( )a be A t e B t= − = −            (14) 
  
By substituting the adaptive control law (12) into (11), we get the closed-loop error dynamics as follows: 
 

1 1 1

2 2 2 2

3 3 3 3

[ ( )]
[ ( )]

e k e
e a A t e k e
e b B t e k e

= −
 = − − −
 = − − −







        (15) 

 
Using the definition (13), it is possible to simplify the closed-loop error dynamics (15) as follows: 

 

 
1 1 1

2 2 2 2

3 3 3 3

a

b

e k e
e e e k e
e e e k e

= −
 = − −
 = − −







         (16) 

  
We consider the quadratic Lyapunov function V defined as follows: 
 

 ( ) ( )2 2 2 2 2
1 2 3 1 2 3

1 1( , , , , )
2 2a b a bV e e e e e e e e e e= + + + +       (17) 

 
Differentiating V along the trajectories of (16) and (14), we obtain the following: 
 

 2 2 2 2 2
1 1 2 2 3 3 2 3a bV k e k e k e e e A e e B   = − − − + − − + − −  

       (18) 

 
In view of (18), we propose the following parameter update law: 
 

 
2
2
2
3

A e
B e

 = −


= −




          (19) 

 
Thus, we prove the following main result of this section. 
 
The new result is established using Lyapunov stability theory (Khalil, 2002). 
 
Theorem 1. The new chaotic systems (8) and (9) with unknown system parameters ,a b  are globally and 
exponentially synchronized for all initial conditions 3(0), (0)X Y R∈ with the adaptive feedback control law (12) 
and the parameter update law (19), where the control gains 1 2 3, ,k k k are positive constants. 
 
Proof.  First, we note that the candidate Lyapunov function V  given in Eq. (17) is a quadratic and positive definite 
function on 5.R  Next, we substitute the parameter update law (19) into Eq. (18). This results in the following: 
 

 2 2 2
1 1 2 2 3 3V k e k e k e= − − −         (20) 

  
This shows that V is a negative semi-definite function on  5.R  Hence, by Barbalat’s Lemma (Khalil, 2002), we 
conclude that the controlled error variables 1 2 3( ), ( ), ( )e t e t e t  of the closed-loop error dynamics (16) exponentially 
converge to zero as .t →∞ This completes the proof.     
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For numerical simulations, we take the control gains as  10,ik = 1,2,3.i =  Also, we take the parameter values as in 
the chaotic case (2), i.e.  ( , ) (0.6,0.4).a b =  As the initial states of the new chaotic systems (8) and (9), we take 

(0) (2.5,  6.8,  3.4)X = and (0) (7.2,  2.9,  1.5),Y = respectively. We also take ( (0), (0)) (9,  14).A B =  
 
Figures 7-9 show the synchronization of the states of the new chaotic systems (8) and (9), while Figure 10 shows the 
time-history of the synchronization error between these two systems, when the adaptive control law (12) and the 
parameter update law (16) are implemented.  

 

 
Figure 7. Synchronization of the states 1x and 1y of the new chaotic systems (8) and (9) 

 
Figure 8. Synchronization of the states 2x and 2y of the new chaotic systems (8) and (9) 
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Figure 9. Synchronization of the states 3x and 3y of the new chaotic systems (8) and (9) 

 
Figure 10. Time-history of the synchronization error between the new chaotic systems (8) and (9) 
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4. Circuit Simulation of the New 3-D Chaotic System with Three Nonlinearities 
  
The circuit comprises of electronic components such as resistors, capacitors, and operational amplifiers. Figure 11 
shows the circuit schematic for implementing the new 3-D hyperchaotic system Eq. (1). There are 3 capacitors, 11 
resistors, 5 opamps and 5 multipliers in the circuit. Here the state variables in system (1) are the voltages across the 
capacitors. The dynamical equations of the circuit are given by 
 

1 2 2 3
1 1 1 2

2 1 2 1 3
2 3 2 4 2 5

4
3 3 1

3 7 3 6

1 1
10

1 1 1
10

1 1
1000

x x x x
C R C R

x x x x x
C R C R C R

x x x
C R C R


= +


 = − −



= − +








       (21) 

 
In (21), x1, x2, x3 are the voltages of corresponding capacitors C1,C2,C3. The values of components in Figure 11 are 
selected to match the model (21) as follows: R1 = R3 = 400 kΩ, R2 = R5 = 40 kΩ, R4 = 666.67 kΩ, R6 = 400 Ω, R7 = 1 
MΩ,  R8 = R9 =R10 = R11 = 100 kΩ, C1 = C2 = C3 = 1 nF. The MultiSIM outputs, showing phase portraits of the new 
3-D hyperchaotic system as seen in Figure 12, agree well with the MATLAB simulation of the equations (1) shown 
earlier. 
 
5. Conclusions 
 
In this work, we reported the modelling of a new 3-D chaotic system with 3 nonlinearities. The 2-D phase plots and 
bifurcation analysis of the new chaotic system are described by means of MATLAB plots, Lyapunov exponents, etc. 
It was shown that the chaotic system has a unique saddle-point equilibrium at the origin, which is unstable. As a 
control application, the adaptive synchronization of the new chaotic system with itself was derived using Lyapunov 
stability theory. Finally, an electronic circuit of the new chaotic system was built with MultiSIM and a good match 
between the plots of the theoretical chaotic model and the circuit model was obtained. The electronic circuit model 
validates the new theoretical chaotic model developed in this work confirming that the new chaotic system is very 
suitable for engineering and real-world applications such as encryption, secure communication, etc. 
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Figure 11 Circuit design for the new 3-D chaotic system with three nonlinearities by MultiSIM 
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(a) 

 
 

     
 
                                               (b)                                                                                      (c) 
 

Figure 12 The phase portraits of the new 3-D chaotic system with three nonlinearities 
observed on the oscilloscope in different planes (a) x1-x2, (b) x2-x3plane and  

(c) x1-x3 plane by MultiSIM 
 
 
 
 
 
 
 
 
 
 

2142



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

 
 
References  
 
Azar, A.T., and Vaidyanathan, S., Advances in Chaos Theory and Intelligent Control, Springer, Berlin, 2016. 
Buscarino, A., Fortuna, L., Frasca, M and Valentina Gambuzza, L. A chaotic circuit based on Hewlett-Packard 

memristor. Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 22, no. 2, 023136, 2012. 
Daltzis, P., Vaidyanathan, S., Pham, V.T., Volos, C., Nistazakis, E., and Tombras, G., Hyperchaotic attractor in a 

novel hyperjerk system with two nonlinearities, Circuits, Systems, and Signal Processing, vol. 37, no. 2, pp. 
613-635, 2018. 

Khalil, H.K., Nonlinear Systems, Prentice Hall, New York, 2002. 
Li, C., Liao, X., and Wong, K.W., Lag synchronization of hyperchaos with application to secure communications, 

Chaos, Solitons and Fractals, vol. 23, no. 1, pp. 183-193, 2005. 
Lorenz, E.N., Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, vol. 20, pp. 130-141, 1963. 
Mamat, M., Vaidyanathan, S., Sambas, A., Mohamed, M.A., Sampath, S., and Sanjaya, W.S.M., A New 3-D chaotic 

system with conch-shaped equilibrium curve and its circuit implementation, International Journal of 
Engineering and Technology, vol. 7, no. 3, pp. 1410-1414, 2018. 

Murali, K., Heterogeneous chaotic systems based cryptography, Physics Letters A, vol. 272, pp. 184-192, 2000. 
Muthuswamy, B. Implementing memristor based chaotic circuits. International Journal of Bifurcation and 

Chaos, vol. 20, no. 5, 1335-1350, 2010. 
Pakiriswamy, S., and Vaidyanathan, S., Generalized projective synchronization of three-scroll chaotic systems via 

active control”, Lecture Notes of the Institute for Computer Sciences, Social-Informatics and 
Telecommunications Engineering, vol. 85, pp. 146-155, 2012. 

Pham, V.T., Jafari, S., Volos, C., Giakoumis, A., and Vaidyanathan, S., A chaotic system with equilibria located on 
the rounded square loop and its circuit implementation, IEEE Transactions on Circuits and Systems II: Express 
Briefs, vol. 63, no. 9, pp. 878-882, 2016. 

Rasappan, S., and Vaidyanathan, S., “Synchronization of hyperchaotic Liu system via backstepping control with 
recursive feedback, Communications in Computer and Information Science, vol. 305, pp. 212-221, 2012. 

Sambas, A., Vaidyanathan, S., Mamat, M., Sanjaya, W.S.M., and Rahayu, D.S., A 3-D novel jerk chaotic system 
and its application in secure communication system and mobile robot navigation, Studies in Computational 
Intelligence, vol. 636, pp. 283-310, 2016. 

Sambas, A., Mamat, M., Vaidyanathan, S., Mohamed, M.A., and Mada Sanjaya, W.S., A new 4-D chaotic system 
with hidden attractor and its circuit implementation, International Journal of Engineering and Technology, vol. 
7, no. 3, pp. 1245-1250, 2018a. 

Sambas, A., Mamat, M., Vaidyanathan, S., Mohamed, M.A., Mada Sanjaya, W.S., and Mujiarto, A novel chaotic 
hidden attractor, its synchronization and circuit implementation, WSEAS Transactions on Systems and Control, 
vol. 13, pp. 345-352, 2018b. 

Sun, J., Shen, Y., Yin, Q and Xu, C. Compound synchronization of four memristor chaotic oscillator systems and 
secure communication. Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 23, no. 1, 013140, 2013. 

Vaidyanathan, S., Adaptive controller and synchronizer design for the Qi-Chen chaotic system, Lecture Notes of the 
Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, vol. 85, pp. 124-133, 
2012a. 

Vaidyanathan, S., Analysis and synchronization of the hyperchaotic Yujun systems via sliding mode control, 
Advances in Intelligent Systems and Computing, vol. 176, pp. 329-337, 2012b. 

Vaidyanathan, S., Qualitative analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic 
system with a quartic nonlinearity, International Journal of Control Theory and Applications, vol. 7, no. 1, 
pp.1-20, 2014. 

Vaidyanathan, S., Output regulation of the forced Van der Pol chaotic oscillator via adaptive control method, 
International Journal of PharmTech Research, vol. 8, no. 6, pp. 106-116, 2015a. 

Vaidyanathan, S., Global chaos synchronization of the forced Van der Pol chaotic oscillators via adaptive control 
method, International Journal of PharmTech Research, vol. 8, no. 6, pp. 156-166, 2015b. 

Vaidyanathan, S., Global chaos synchronization of the Lotka-Volterra biological systems with four competitive 
species via active control, International Journal of PharmTech Research, vol. 8, no. 6, pp. 206-207, 2015c. 

Vaidyanathan, S., Lotka-Volterra population biology models with negative feedback and their ecological monitoring, 
International Journal of PharmTech Research, vol. 8, no. 5, pp. 974-981, 2015d.  

2143



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

Vaidyanathan, S., Synchronization of 3-cells cellular neural network (CNN) attractors via adaptive control method,  
International Journal of PharmTech Research, vol. 8, no. 5, pp. 946-955, 2015e. 

Vaidyanathan, S., Adaptive control of the FitzHugh-Nagumo chaotic neuron model, International Journal of 
PharmTech Research, vol. 8, no. 6, pp. 117-127, 2015f. 

Vaidyanathan, S., Chaos in neurons and synchronization of Birkhoff-Shaw strange chaotic attractors via adaptive 
control, International Journal of PharmTech Research, vol. 8, no. 6, pp. 1-11, 2015g. 

Vaidyanathan, S., Adaptive synchronization of the identical FitzHugh-Nagumo chaotic neuron models,  
International Journal of PharmTech Research, vol. 8, no. 6, pp. 167-177, 2015h. 

Vaidyanathan, S., Hyperchaos, qualitative analysis, control and synchronisation of a ten-term 4-D hyperchaotic 
system with an exponential nonlinearity and three quadratic nonlinearities, International Journal of Modelling, 
Identification and Control, vol. 23, no. 4, pp.380-392, 2015i. 

Vaidyanathan, S., Analysis, control, and synchronization of a 3-D novel jerk chaotic system with two quadratic 
nonlinearities, Kyungpook Mathematical Journal, vol. 55, no. 3, pp. 563-586, 2015j. 

Vaidyanathan, S., Global chaos synchronization of chemical chaotic attractors via novel sliding mode control 
method, International Journal of ChemTech Research, vol. 8, no. 7, pp. 209-221, 2015k. 

Vaidyanathan, S., and Rasappan, S., Hybrid synchronization of hyperchaotic Qi and Lü systems by nonlinear control, 
Communications in Computer and Information Science, vol. 131, pp. 585-593, 2011. 

Vaidyanathan, S., and Sampath, S., Sliding mode controller design for the global chaos synchronization of Coullet 
systems, Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications 
Engineering, vol. 84, pp. 103-110, 2012. 

Vaidyanathan, S., Volos, C.K., Rajagopal, K., Kyprianidis, I.M., and Stouboulos, I.N., Adaptive backstepping 
controller design for the anti-synchronization of identical WINDMI chaotic systems with unknown parameters 
and its SPICE implementation, Journal of Engineering and Technology Review, vol. 8, no. 2, pp. 74-82, 2015. 

Vaidyanathan, S., Sambas, A., Mamat, M., Sanjaya WS, M., A new three-dimensional chaotic system with a hidden 
attractor, circuit design and application in wireless mobile robot, Archives of Control Sciences, vol. 27, no. 4, 
2017. 

Vaidyanathan, S., Azar, A.T., Rajagopal, K., Sambas, A., Kacar, S., and Cavusoglu, U., A new hyperchaotic 
temperature fluctuations model, its circuit simulation, FPGA implementation and an application to image 
encryption, International Journal of Simulation and Process Modelling, vol. 13, no. 3, pp. 281-296, 2018a. 

Vaidyanathan, S., Jafari, S., Pham, V.T., Azar, A.T., and Alsaadi, F.E., A 4-D chaotic hyperjerk system with a 
hidden attractor, adaptive backstepping control and circuit design, Archives of Control Sciences, vol. 28, no. 2, 
pp. 239-254, 2018b. 

Vaidyanathan, S., Sambas, A., Kacar, S., and Cavusoglu, U., A new three-dimensional chaotic system with a cloud-
shaped curve of equilibrium points, its circuit implementation and sound encryption, International Journal of 
Modelling, Identification and Control, vol. 30, no. 3, pp. 184-196, 2018c. 

Vaidyanathan, S., Sambas, A., Mohamed, M.A., Mamat, M., and Mada Sanjaya, W.S., A new hyperchaotic 
hyperjerk system with three nonlinear terms, its synchronization and circuit simulation, International Journal of 
Engineering and Technology, vol. 7, no. 3, pp. 1585-1592, 2018d. 

Vaidyanathan, S., Feki, M., Sambas, A., and Lien, C.H., A new biological snap oscillator: Its modelling, analysis, 
simulations and circuit design, International Journal of Simulation and Process Modelling, vol. 13, no. 5, pp. 
419-432, 2018e. 

Vaidyanathan, S., Akgul, A., Kacar, S., and Cavusoglu, U., A new 4-D chaotic hyperjerk system, its synchronization, 
circuit design and applications in RNG, image encryption and chaos-based steganography, European Physical 
Journal Plus, vol. 133, no. 2, pp. 46, 2018f. 

Voorsluijs, V. and Decker, Y.D., Emergence of chaos in a spatially confined reactive system, Physica D: Nonlinear 
Phenomena, vol. 335, pp. 1-9, 2016. 

Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A., Determining Lyapunov exponents from a time series, 
Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, 1985. 

Wu, X., Bai, C., and Kan, H., A new color image cryptosystem via hyperchaos synchronization, Communications in 
Nonlinear Science and Numerical Simulation, vol. 19, no. 6, pp. 1884-1897, 2014. 

Xue, H.W., Du, J., Li, S.L. and Ma, W.J., Region of interest encryption for color images based on a hyperchaotic 
system with three positive Lyapunov exponents, Optics and Laser Technology, vol. 106, pp. 506-516, 2018. 

Zhao, X., Li, Z and Li, S. Synchronization of a chaotic finance system. Applied Mathematics and Computation, vol. 
217, no. 13, 6031-6039, 2011. 

 
 

2144



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

Biographies  
 
Aceng Sambas is currently a Lecturer at the Muhammadiyah University of Tasikmalaya, Indonesia since 2015. He 
received his MSc in Mathematics from the Universiti Sultan Zainal Abidin (UniSZA), Malaysia in 2015. His current 
research focuses on dynamical systems, chaotic signals, electrical engineering, computational science,  signal 
processing, robotics, embedded systems and artificial intelligence. 
 
Sundarapandian Vaidyanathan is a Professor and Dean at the Research and Development Centre, Vel Tech 
University, Chennai, India. He received his D.Sc in Electrical and Systems Engineering from Washington   
University, St. Louis, USA in 1996. He has published over 460 Scopus-indexed research papers. His current 
research focuses on control systems, chaos theory, chaotic and hyperchaotic systems, sliding mode control, neuro-
fuzzy control, computational science, circuits and memristors. He is the Editor-in-Chief of International Journal of 
Nonlinear Dynamics and Control (IJNDC), Inderscience Publishers, Olney, UK. He is also in the Editorial Boards of 
many control journals published by Inderscience, Olney, UK. 

Sukono is a lecturer in the Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas 
Padjadjaran. Currently serves as Head of Master's Program in Mathematics, the field of applied mathematics, with a 
field of concentration of financial mathematics and actuarial sciences.  
 
Subiyanto is a lecturer in the Department of Marine Science, Faculty of Fishery and Marine Science, Universitas 
Padjadjaran. He received his Ph.D in School of Ocean Engineering from Universiti Malaysia Terengganu (UMT), 
Malaysia in 2017. His research focuses on applied mathematics, numerical analysis and computational science. 
 
Mustafa Mamat is currently a Professor and the Dean of Graduate School at Universiti Sultan Zainal Abidin 
(UniSZA), Malaysia since 2013. He was first appointed as a Lecturer at the Universiti Malaysia Terengganu (UMT) 
in 1999. He obtained his PhD from the UMT in 2007 with specialization in optimization. Later on, he was appointed 
as a Senior Lecturer in 2008 and then as an Associate Professor in 2010 also at the UMT. To date, he has 
successfully supervised more than 60 postgraduate students and published more than 200 research papers in various 
international journals and conferences. His research interests include conjugate gradient methods, steepest descent 
methods, Broyden’s family and quasi-Newton methods.  
 
Abdul Talib Bon is a Professor of Production and Operations Management in the Faculty of Technology 
Management and Business at the Universiti Tun Hussein Onn Malaysia since 1999. He has a PhD in Computer 
Science, which he obtained from the Universite de La Rochelle, France in the year 2008. His doctoral thesis was on 
topic Process Quality Improvement on Beltline Moulding Manufacturing. He studied Business Administration in the 
Universiti Kebangsaan Malaysia for which he was awarded the MBA in the year 1998. He’s bachelor degree and 
diploma in Mechanical Engineering which his obtained from the Universiti Teknologi Malaysia. He received his 
postgraduate certificate in Mechatronics and Robotics from Carlisle, United Kingdom in 1997. He had published 
more 150 International Proceedings and International Journals and 8 books. He is a member of MSORSM, IIF, 
IEOM, IIE, INFORMS, TAM and MIM. 
 

2145


	References
	References
	Biographies
	Biographies
	Biographies



