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Abstract 
 
electromagnetic problem. The FDTD is derived by discretizing the Maxwell’s Equation using the 
finite difference (FN) method. We test the governing equation by numerically constructing the Yee 
Algorithm in 1-Dimensional (1-D) System to describe the distribution of the Transverse Electric 
(TE) and Transverse Magnetic (TM) within two type boundary condition. First, we simulate the 
system using Perfectly Electrically/Magnetically Conducting (PEC/PMC) boundary condition, 
second with Absorbing Boundary Condition (ABCs). We assume that TE and TM are propagate in 
homogenous and isotropic media. Thereore, the conductivity σ, permeability, μ and permittivity 
remains constant time by time. For a further studiy, we apply the simulation to the isotropic and 
homogenous 2 dimensional earth layers that have a various condition of the BVP. The result leads 
to the conclusion that for the ideal condition of the layered earth model, the simulation is able to 
give a best solution for each earth layer problem.  

 
Keywords: Electromagnetic, FDTD, BVP, Finite Difference, numerical simulation. Earth Layer 
Problem 
 

The Finite Difference Time Domain (FDTD) method is an application of the finite difference method, 
commonly used on solving differential equations to solve Maxwell’s equations. The time-dependent Maxwell's 
equations (in partial differential form) are discretized using central-difference approximations to the space and time 
partial derivatives. (rathiv et al, 2012) 

The resulting finite difference equations are solved in FDTD, space is divided into small portions called cells. 
On the surfaces of each cell, there are assigned points. Each point in the cell is required to satisfy Maxwell’s equations. 
(Chan, A, 2006). In this way, electromagnetic waves are simulated to propagate in a numerical space.. FDTD is one of 
the commonly used methods to analyse electromagnetic phenomena at radio and microwave frequencies. The FDTD 
The technique was first proposed by K. Yee in early 70s 
 
Theory 

Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 2160

mailto:betty.subartini@unpad.ac.id
mailto:betty.subartini@unpad.ac.id


The theory on the basis of the FDTD method is to solve an electromagnetic Problem by  discretizing the 
Maxwell’s equations both in time and space with central difference approximations.(Yee, 1966). As we know clearly 
that any classical electrodinamic phenomena can be described physically and mathematically by the Maxwell’s 
equation 

Let us see again the complete four set ofMaxwell equation. 
 

 
∇ ∙ 𝐃𝐃 = 𝜌𝜌                                (1) 

∇ × 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

                      (2) 

∇ × 𝐇𝐇 = 𝐉𝐉 +
𝜕𝜕𝐃𝐃
𝜕𝜕𝜕𝜕

                   (3) 
∇ ∙ 𝐇𝐇 = 0                              (4) 

 
where   𝐃𝐃 = ε𝐄𝐄   𝐁𝐁 = μ𝐇𝐇 
 
where B is the magnetic flux density, E is the electric field intensity, D is the electric flux density, H is the magnetic 
field intensity and ε is the electric permittivity and μ is the magnetic permeability. 
 In order to better understand, Let consider the maxwell’s equation for the free space, therefore there is source 
of charge (ρ=0) and the conductivity is zero (σ=0). The maxwell’s equation for the free space become 
 

∇ ∙ 𝐃𝐃 = 0                                (5) 

∇ × 𝐄𝐄 = −𝜇𝜇
𝜕𝜕𝐇𝐇
𝜕𝜕𝜕𝜕

                   (6) 

∇ × 𝐇𝐇 = 𝜖𝜖
𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕

                       (7) 
           ∇ ∙ 𝐇𝐇 = 0                              (8) 

 
This set of equation is also valid for the homogenous and isotropic media. 
 
Yee Algorithm 
 The FDTD method has been developed for one-dimensional, two-dimensional and three-dimensional forms, 
but for simplicity here, the two-dimensional problem for the transverse magnetic case (Yee, 1966). 
 Let see the equation (6) and (7).  
 

∇ × 𝐄𝐄 = −𝜇𝜇
𝜕𝜕𝐇𝐇
𝜕𝜕𝜕𝜕

                    

∇ × 𝐇𝐇 = 𝜖𝜖
𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕

                        
 
For 1-D case, we can rewrite the equation to be 
 

−
1
𝜀𝜀
∂𝐇𝐇𝑦𝑦

∂z
=
𝜕𝜕𝐄𝐄𝒙𝒙
𝜕𝜕𝜕𝜕

     (9) 
 

−
1
𝜇𝜇
∂𝐄𝐄𝑥𝑥
∂z

=
𝜕𝜕𝐇𝐇𝒚𝒚

𝜕𝜕𝜕𝜕
    (10) 

 
That represent a plane wave travelling in the z-direction. (Sadiku,2006). 
We can see that the Transverse Electric (TE) mode and Transverse Magnetic (TM) mode are completely 

uncoupled from one another; in other words, they contain no common vector field components and can therefore exist 
independently from one another. That represent a plane wave travelling in the z-direction. (Sadiku,2006). 
 We now separately consider the discretization of Equations (9) and (10), respectively, for TE and TM 
modes using central difference 
 
For TE mode 
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𝜕𝜕𝐄𝐄𝒙𝒙
𝜕𝜕𝜕𝜕

=
𝐸𝐸𝑥𝑥
𝑛𝑛+12(𝑘𝑘) − 𝐸𝐸𝑥𝑥

𝑛𝑛−12(𝑘𝑘)
∆𝜕𝜕

                  (11) 

∂𝐇𝐇𝑥𝑥

∂z
=
𝐻𝐻𝑦𝑦𝑛𝑛 �𝑘𝑘 + 1

2� − 𝐻𝐻𝑦𝑦𝑛𝑛 �𝑘𝑘 −
1
2�

∆𝑧𝑧
                  (12) 

 
Therefore, the equation 9 become 
 

𝐸𝐸𝑥𝑥
𝑛𝑛+12(𝑘𝑘) − 𝐸𝐸𝑥𝑥

𝑛𝑛−12(𝑘𝑘)
∆𝜕𝜕

= −
1
𝜀𝜀
𝐻𝐻𝑦𝑦𝑛𝑛 �𝑘𝑘 + 1

2� − 𝐻𝐻𝑦𝑦𝑛𝑛 �𝑘𝑘 −
1
2�

∆𝜕𝜕 (13) 

For TM mode 

𝜕𝜕𝐇𝐇𝒚𝒚

𝜕𝜕𝜕𝜕
=
𝐻𝐻𝑦𝑦𝑛𝑛+1(𝑘𝑘 + 1

2) −𝐻𝐻𝑦𝑦𝑛𝑛−1(𝑘𝑘 − 1
2)

∆𝜕𝜕
         (14) 

∂𝐄𝐄𝑦𝑦
∂z

=
𝐸𝐸𝑥𝑥
𝑛𝑛+12(𝑘𝑘 + 1) − 𝐸𝐸𝑥𝑥

𝑛𝑛−12(𝑘𝑘)
∆𝑧𝑧

                  (15) 
 
Therefore, the equation (10) become 
 

𝐻𝐻𝑦𝑦𝑛𝑛+1(𝑘𝑘 + 1
2) − 𝐸𝐸𝑦𝑦𝑛𝑛−1(𝑘𝑘 − 1

2)
∆𝜕𝜕

= −
1
𝜇𝜇
𝐸𝐸𝑥𝑥
𝑛𝑛+12(𝑘𝑘 + 1) − 𝐸𝐸𝑥𝑥

𝑛𝑛−12(𝑘𝑘)
∆𝑧𝑧

(16)  

 
Equations (13) and (16) show the usefulness of Yee’s scheme in order to have a central difference approximation for the 
derivatives. In particular, the left term in equation (13) says that the derivative of the E field at time nΔt can be 
expressed as a central difference using E field values at times (n+1/2)Δt and (n-1/2)Δt. The right term in equations (13) 
approximates instead the derivative of the H field at point kΔx as a central difference using H field values at points 
(k+1/2)Δz and (k-1/2)Δz. This scheme is known as “leap-frog” algorithm.(Andrew, 2004) See figure. (1) 
 

 
Figure 1. Yee’s one-dimensional scheme for updating EM fields in space and time 

 
The explicit FDTD equation can be derived from (13) and (16) obtaining 
 

𝐸𝐸𝑥𝑥
𝑛𝑛+12(𝑘𝑘) = 𝐸𝐸𝑥𝑥

𝑛𝑛−12(𝑘𝑘) +
∆𝜕𝜕
𝜀𝜀∆𝑧𝑧

�𝐻𝐻𝑦𝑦𝑛𝑛 �𝑘𝑘 −
1
2
� − 𝐻𝐻𝑦𝑦𝑛𝑛 �𝑘𝑘 +

1
2
�� (17) 

𝐻𝐻𝑦𝑦𝑛𝑛+1 �𝑘𝑘 +
1
2
� = 𝐻𝐻𝑦𝑦𝑛𝑛 �𝑘𝑘 +

1
2
� +

∆𝜕𝜕
𝜇𝜇∆𝑧𝑧

�𝐸𝐸𝑥𝑥
𝑛𝑛−12(𝑘𝑘) − 𝐸𝐸𝑥𝑥

𝑛𝑛+12(𝑘𝑘 + 1)� (18) 

 
To avoid computational problem, (taflove, 2004) in his book, taflove introduced a normalization of the E field 
 

𝐸𝐸 = �
𝜖𝜖
𝜇𝜇
𝐸𝐸           (19) 

 
Now, equation (17) and (18) become 
 

𝐸𝐸𝑥𝑥
𝑛𝑛+12(𝑘𝑘) = 𝐸𝐸𝑥𝑥

𝑛𝑛−12(𝑘𝑘) +
1
√𝜖𝜖𝜇𝜇

∆𝜕𝜕
∆𝑧𝑧 �

𝐻𝐻𝑦𝑦𝑛𝑛 �𝑘𝑘 −
1
2
� − 𝐻𝐻𝑦𝑦𝑛𝑛 �𝑘𝑘 +

1
2
�� (19) 
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𝐻𝐻𝑦𝑦𝑛𝑛+1 �𝑘𝑘 +
1
2
� = 𝐻𝐻𝑦𝑦𝑛𝑛 �𝑘𝑘 +

1
2
� +

1
√𝜖𝜖𝜇𝜇

∆𝜕𝜕
∆𝑧𝑧

�𝐸𝐸𝑥𝑥
𝑛𝑛−12(𝑘𝑘) − 𝐸𝐸𝑥𝑥

𝑛𝑛+12(𝑘𝑘 + 1)� (20) 

 
For the stability reason, 

1
√𝜖𝜖𝜇𝜇

∆𝜕𝜕
∆𝑧𝑧

≤ 1                     (21) 

So, 

∆𝜕𝜕 ≤
∆𝑧𝑧
√𝜖𝜖𝜇𝜇

                     (22) 

Or, 

∆𝜕𝜕 ≤
∆𝑧𝑧
𝑐𝑐√𝑑𝑑

                   (23) 

 
Where 𝑐𝑐 = 1

�𝜖𝜖0𝜇𝜇0
, and √𝑑𝑑 = √𝜖𝜖𝑟𝑟𝜇𝜇𝑟𝑟  

for numerical purpose, we define the √𝑑𝑑 = 2 . (Taflove,2004).   
 
signal source 
 to simplify the simulation, we consider to chose the sinusoidal signal as he source of the wave. With E0 and as 
the initial pulse at t=0 
 
 𝐸𝐸𝑥𝑥 = 𝐸𝐸𝑥𝑥0 + sin(𝜔𝜔𝜕𝜕)                 (24) 
 

𝐸𝐸𝑥𝑥 = 𝐻𝐻𝑥𝑥0 + sin(𝜔𝜔𝜕𝜕)                 (25) 
 
Boundary Condition 
 To simplify the simulation, we define the boundary condition at node: 
 

𝐸𝐸𝑥𝑥(0,𝑛𝑛) = 0 
 

𝐻𝐻𝑦𝑦(0,𝑛𝑛) = 0 
 
Finally, the equation (19) and (20) can be simulate in MATLAB 
 
I. Simulation and Result 

 
By using MATLAB, we then solve the equation (19) and (20) numerically. The result shows the sinusoidal 

field propagation of both TE and TM mode. (see figure. 2). 
.
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Figure 2. the Ex and Hy propagation along the z direction and reflected by the boundary. The lower image is the 
final state at t=1250 ps. 

 
From the simulation we can see that Ex and Hx separated into two wave which propagate in opposite direction. Where 
the Ex has the same the opposite phase with Hx in the positive direction, and opposite phase in the negative direction. It 
is not important, because we define it as the initial condition. The most important is, the condition when the wave 
collide  the boundary. It is reflected in the same magnitude, but with opposite pahse. It means that the boundary is 
acting like an operator for changing the phase but still preserve the magnitude. This boundary condition called Perfectly 
Electrically Conducting (PEC). Perfectly Magnetical Conducting (PMC).  

PEC and PMC boundaries are specified by simply setting the boundary electric field node Ex = 0 or the 
boundary magnetic field node Hy = 0, respectively. 
 
Simulation with absorbing Boundary Condition 
  

we need to model a region that “trap” the field inside. In most of the problems, however, we need to simulate 
open space regions. In these cases, since our simulation region MUST be limited, we need to find a way to “simulate” 
the open space. These boundary conditions are called Absorbing Boundary Conditions (ABCs). (chan,2006) 

Let us see again the equation (19) and (20)   
 
The absorbing boundary condition for the 1-D case can be therefore expressed by 
 
For z=1 

𝐸𝐸𝑥𝑥
𝑛𝑛+12(1) − 𝐸𝐸𝑥𝑥

𝑛𝑛−2+12(𝐾𝐾)           (26) 
 
For the left side of the mesh 
 

𝐸𝐸𝑥𝑥
𝑛𝑛+12(𝐾𝐾𝐸𝐸) − 𝐸𝐸𝑥𝑥

𝑛𝑛−2+12(𝐾𝐾𝐸𝐸 − 1)     (27) 
 
for the right side of the mesh. With these conditions, in the 1D simulation described in the 
previous section the wave will be completely “absorbed” by the termination (boundary). (chan,2006). 
 The boundary condition proposed by G.Mur (2009) can be explained by considering the wave equation that the 
electromagnetic field obey. Considering the 1D case, we can write the following wave equation 
 

𝜕𝜕2𝐄𝐄𝒙𝒙
𝜕𝜕𝜕𝜕2

−
1
𝑐𝑐2
∂2𝐇𝐇𝑥𝑥

∂t2
= 0                       (28) 

 
The equation (28) can be rewrite as 
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�
𝜕𝜕
𝜕𝜕𝑧𝑧

+
1
𝑐𝑐
𝜕𝜕
𝜕𝜕𝜕𝜕
� �

𝜕𝜕
𝜕𝜕𝑧𝑧

+
1
𝑐𝑐
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝐄𝐄𝒙𝒙 = 0      (29) 

Engquist and Madja (2009) have shown that an absorbing boundary condition for the left side of the grid (z=0) can be 
derived applying the condition. 
 

�
𝜕𝜕
𝜕𝜕𝑧𝑧

+
1
𝑐𝑐
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝐄𝐄𝒙𝒙 = 0               (30) 

 
By substituting the equation (26) & (27) to the equation (30), we obtain 
 

1
∆𝑧𝑧

(𝐸𝐸𝑥𝑥𝑛𝑛(1) − 𝐸𝐸𝑥𝑥𝑛𝑛(𝐾𝐾) ) −
1
𝑐𝑐∆𝜕𝜕

  (𝐸𝐸𝑥𝑥
𝑛𝑛+12(1) − 𝐸𝐸𝑥𝑥

𝑛𝑛−2+12(𝐾𝐾))    = 0    (31)  
 

Therefore 
 

1
𝑐𝑐∆𝜕𝜕

�
𝐸𝐸𝑥𝑥
𝑛𝑛+1/2(2) − 𝐸𝐸𝑥𝑥

𝑛𝑛−1/22
2

−
𝐸𝐸𝑥𝑥
𝑛𝑛+1/2(1) − 𝐸𝐸𝑥𝑥

𝑛𝑛−1/2(1)
2

�  −
1
𝑐𝑐∆𝜕𝜕

  �
𝐸𝐸𝑥𝑥
𝑛𝑛+12(1) − 𝐸𝐸𝑥𝑥

𝑛𝑛−122
2

−
𝐸𝐸𝑥𝑥
𝑛𝑛+12(1) − 𝐸𝐸𝑥𝑥

𝑛𝑛−12(2)
2

�   

= 0   (31) 
 
Simplification for the left boundary. (chan,2006) 
 

𝐸𝐸𝑥𝑥
𝑛𝑛+12(1) = 𝐸𝐸𝑥𝑥

𝑛𝑛−2+12(2) +
𝑐𝑐∆𝜕𝜕 − ∆𝑧𝑧
𝑐𝑐∆𝜕𝜕 + ∆𝑧𝑧

�𝐸𝐸𝑥𝑥
𝑛𝑛+12(2) − 𝐸𝐸𝑥𝑥

𝑛𝑛−12(1)�    (32) 

 
And for the right boundary 
 

𝐸𝐸𝑥𝑥
𝑛𝑛+12(𝐾𝐾𝐸𝐸) = 𝐸𝐸𝑥𝑥

𝑛𝑛−2+12(𝐾𝐾𝐸𝐸 − 1) +
𝑐𝑐∆𝜕𝜕 − ∆𝑧𝑧
𝑐𝑐∆𝜕𝜕 + ∆𝑧𝑧

�𝐸𝐸𝑥𝑥
𝑛𝑛+12(𝐾𝐾𝐸𝐸 − 1) − 𝐸𝐸𝑥𝑥

𝑛𝑛−12(𝐾𝐾𝐸𝐸)�    (33) 

 
Finally, we simulate the equation (32) and (33) using MATLAB. 
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Figure 3. the Ex and Hy propagation along the z direction and reflected by the boundary ABCs 
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From the figure above, we can see that after the wave is collide with the boundary, there are no reflected wave 
both for TE and TM mode. It is called as ABCs boundary condition which can absorb the magnitude of both TE and 
TM. 
 
Conclusion 

 
The FDTD method is widely used because it is simple to solve numerically. It can  solve Maxwell’s time-

dependent curl equations by using finite differences to discretize them. This report describes the design of 1- FDTD 
simulation for both TE and TM mode. This report also successfully demonstrates a working 1D-FDTD code that 
correctly implements PEC, PMC, and ABCs boundaries. 
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