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Abstract 

     The max-cut problem is one ofthe well known and most studied hard optimization problems. 
In this paper we present an easily computable upper bound on the max-cut based on the maximum eigenvalue of 
an associated matrix. The connection between eigenvalues and cuts in graphs has been first discovered by 
Fiedler. The eigenvalue based methods have proved to be useful also for some other problems, e.g. expanding 
properties of graphs, isoperimetric numbers of graphs, etc. 
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1. Introduction

The max-cut problem is one ofthe well known and most studied hard optimization
problems. It can be stated as follows. Given an undirected graph G = (V, E) with edge 
weights cij∈R for all ij∈E, find a cut 𝛿𝛿(S) in G for which c(𝛿𝛿(S)) := ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝛿𝛿(𝑆𝑆)  is maximum. 
Here 𝛿𝛿(S) denotes the set of edges {𝑖𝑖𝑖𝑖|𝑖𝑖 ∈ 𝑆𝑆, 𝑗𝑗 ∉ 𝑆𝑆} for S⊂V. 
      The max-cut problem is known to be polynomially solvable for some classes of graphs: 
for planar graphs (Orlova and Dorfman 1972), (Hadlock 1975)), for graphs not contractible to 
K5 (Barahona 1983), for weakly bipartite graphs (Grotschelânâ and Pulleyblank 1981), for 
graphs without long odd cycles (Grötschel and Nemhauser 1984). (Thelatterclasses only foi 
nonnegative weights.) The max-cut problem is NP-complete even for the cardinality version, 
called the maximum bipartite subgraph problem, where all weights cij = 1 (Karp1972). 
     A practical algorithm for solving large instances of the max-cut problem has been 
developed in (Barahona et al. 1988), where also some applications are presented. Another 
application has been given in (Nešetřil and Poljak 1986). A simple polynomial time heuristic 
that guarantees a probabilistic lower bound appeared in ( Poljak and  Turzik 1986). 
     In this paper we present an easily computable upper bound on the max-cut based on the 
maximum eigenvalue of an associated matrix. The connection between eigenvalues and cuts 
in graphs has been first discovered by Fiedler (Fiedler 1973). The eigenvalue based methods 
have proved to be useful also for some other problems, e.g. expanding properties of graphs 
(Alon 1986), (Alon and Milman 1985), (Tanner 1984), isoperimetric numbers of graphs, etc.  
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     The basic result, an inequality for the max-cut, is derived in Section 2. In Section 3 we 
compare the eigenvalue upper bound with the actual size of maximum bipartite subgraph in 
two classes, Kneser graphs and circulants, where the exact solution is known. It appears that 
the gap between the optimum value and the upper bound can be arbitrarily large. On the other 
hand, the bound is exact for some other classes which are presented in Section 4. 
 
2. BASIC RESULTS ON THE LAPLACIAN EIGENVALUES 
 
     Let G = (V, E) be a graph of order n without loops and multiple edges. The difference 
Laplacian matrix Q = Q(G) of G is an n x n matrix with entries qij defined as follows. 
 

(1) 𝑞𝑞𝑖𝑖𝑖𝑖 = �
 𝑑𝑑𝑖𝑖    the degree of the 𝑖𝑖 − th vertex, if 𝑖𝑖 = 𝑗𝑗
−1                                                       for 𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸

0                                                 otherwise
 

 
       In other words, Q = D − A where A is the adjacency matrix of G and D is the diagonal 
matrix with vertex degrees on the main diagonal. The definition is extended to a weighted 
graph, with weight cij on an edge ij and cij = 0 otherwise, as follows. 
 

(2) 𝑞𝑞𝑖𝑖𝑖𝑖 = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1  

 
𝑞𝑞𝑖𝑖𝑖𝑖 = −𝑐𝑐𝑖𝑖𝑖𝑖 for i ≠ 𝑗𝑗 

 
       In case all weights are nonnegative, the Laplacian Q is a positive semidefinite matrix 
with the smallest eigenvalue 𝜆𝜆1 = 0 (a corresponding eigenvector has all coordinates equal  
to 1). The eigenvalues of Q(G) will always be enumerated in the increasing order 𝜆𝜆1 ≤ 𝜆𝜆2 ≤
 .  .  .≤ 𝜆𝜆𝑛𝑛 repeated according to their multiplicity. We will use the notation 𝜆𝜆𝑘𝑘 = 𝜆𝜆𝑘𝑘(𝐺𝐺) to 
denote the k-th smallest eigenvalue of Q(G), counting the multiplicites. Instead of 𝜆𝜆𝑛𝑛 we will 
write also 𝜆𝜆∞for the maximum eigenvalue of G. 
 
Lemma 2.1. Let G be a weighted graph. We have 
 

(3) 𝑐𝑐(𝛿𝛿(𝑆𝑆)) ≤ 𝜆𝜆∞
|𝑆𝑆|(𝑛𝑛−|𝑆𝑆|)

𝑛𝑛
  for any subset S of vertices. 

 
Proof. It is well known (see e.g. [L, Theorem 3.2.1]) that 
 

(4) 𝜆𝜆∞ = max
𝑥𝑥 ≠ 0

𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄
𝑥𝑥𝑇𝑇𝑥𝑥

  
 
for a symmetric matrix Q. Further, we have xTQx = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)2𝑖𝑖𝑖𝑖∈𝐸𝐸  for аny 𝑥𝑥 = (𝑥𝑥𝑖𝑖)𝑖𝑖∈𝑉𝑉, 
since Q was defined by (2). Given a subset S ⊂ V, define x by 
 

𝑥𝑥𝑖𝑖 ≔ �𝑛𝑛 − 𝑠𝑠 for 𝑖𝑖 ∈ 𝑆𝑆
−𝑠𝑠      for 𝑖𝑖 ∉ 𝑆𝑆 

where s = | S | . Then we have 
 

(5)   𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄 = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2

= ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝛿𝛿(𝑆𝑆)𝑖𝑖𝑖𝑖∈𝐸𝐸 �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2

= 𝑛𝑛2𝑐𝑐�𝛿𝛿(𝑆𝑆)�, 
 and 𝑥𝑥𝑇𝑇 = 𝑠𝑠(𝑛𝑛 − 𝑠𝑠)2(𝑛𝑛 − 𝑠𝑠)𝑠𝑠2 = 𝑠𝑠(𝑛𝑛 − 𝑠𝑠)𝑛𝑛. Using (4) and (5) we get     
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𝜆𝜆∞ ≥
𝑛𝑛𝑛𝑛(𝛿𝛿(𝑆𝑆))
𝑠𝑠(𝑛𝑛 − 𝑠𝑠)

 

and (3) follows. 
     Let us denote by MC(G) : =  max

𝑆𝑆⊂𝑉𝑉
𝑐𝑐(𝛿𝛿(𝑆𝑆)), the max-cut in G. Since |𝑆𝑆|(𝑛𝑛 − |𝑆𝑆|) ≤ 𝑛𝑛2

4�  
for any S⊂V, we have 
Theorem 2.2. Let G be a weighted graph. Then  𝑀𝑀𝑀𝑀(𝐺𝐺) ≤ 𝜆𝜆∞

𝑛𝑛
4
 . 

 
We notice that for odd n the above bound can be sharpened slightly: 
 

𝑀𝑀𝑀𝑀(𝐺𝐺) ≤
𝜆𝜆∞
𝑛𝑛
�
𝑛𝑛
2
� �
𝑛𝑛
2
� 

     The consequences of this result will be exploited in the subsequent sections. Let us present 
now few other results on the Laplacian eigenvalues of a graph. It has been shown in (Fiedler 
1973), (Anderson and Morley 1985) that 𝜆𝜆∞(G) = 𝜆𝜆2(𝐺̅𝐺) for an unweighted graph G and its 
complement G. We extend this equality for nonnegatively weighted graphs. 
     Let G be a weighted graph with a weight function c. We define the complement of G as 
the weighted graph 𝐺̅𝐺 on the same vertex set and with the weight function 𝑐𝑐̅ where 
 

𝑐𝑐𝑖̅𝑖𝑖𝑖 ≔ �
1 − 𝑐𝑐𝑖𝑖𝑖𝑖     if 𝑖𝑖 ≠ 𝑗𝑗
0               if 𝑖𝑖 = 𝑗𝑗 

 
Clearly, Q(G) + Q(𝐺̅𝐺) = nI − J where I is the identity matrix and J is the matrix with all 
entries equal 1. Let us denote by 𝜇𝜇(B, x) the characteristic polynomial of B, and let, for a 
graph G, 𝜇𝜇(G, x):= 𝜇𝜇(Q(G), x). 
 
Lemma 2.3.      𝜇𝜇(𝐺̅𝐺, 𝑥𝑥) = (−1)𝑛𝑛+1 𝑥𝑥

𝑛𝑛−𝑥𝑥
𝜇𝜇(𝐺𝐺, 𝑛𝑛 − 𝑥𝑥).  

 
Proof. 𝜇𝜇(𝐺̅𝐺, 𝑥𝑥) = det�𝑥𝑥𝑥𝑥 − 𝑄𝑄(𝐺̅𝐺)� = det�𝑥𝑥𝑥𝑥 − 𝑛𝑛𝑛𝑛 + 𝐽𝐽 + 𝑄𝑄(𝐺𝐺)� =  (−1)𝑛𝑛 det((𝑛𝑛 − 𝑥𝑥)𝐼𝐼 −
𝐽𝐽 − 𝑄𝑄(𝐺𝐺) = (−1)𝑛𝑛𝜇𝜇(𝑄𝑄(𝐺𝐺) + 𝐽𝐽,𝑛𝑛 − 𝑥𝑥). But in general 𝜇𝜇(𝑄𝑄 + 𝐽𝐽, 𝑡𝑡) is nicely related to 𝜇𝜇(𝑄𝑄, 𝑡𝑡) 
in the case when the column sums of Q are all equal to 0. In the matrix tI − Q − J replace the 
first row by the sum of all rows. 
     Each entry in this row becomes equal to t − n. Subtracting this row divided by t − n from 
all the remaining rows does not change the determinant. Denote the obtained matrix by Bt. On 
the other hand, if we replace the first row of tI − Q by the sum of all rows in this matrix we 
get a matrix which has exactly the same entries as Bt except for the first row where, instead of 
t − n, we have t. Consequently, 
 

𝜇𝜇(𝑄𝑄 + 𝐽𝐽, 𝑡𝑡)
𝑡𝑡 − 𝑛𝑛

=
𝜇𝜇(𝑄𝑄, 𝑡𝑡)
𝑡𝑡

 
 
From this and the calculation at the beginning of the proof, our lemma follows trivially. 
 
Corollary 2.4. Let  𝜆𝜆1(𝐺𝐺) ≤ 𝜆𝜆2(𝐺𝐺) ≤ .  .  .≤ 𝜆𝜆𝑛𝑛(𝐺𝐺) be the Laplacian eigenvalues of a 
nonnegatively weighted graph G. Then  𝜆𝜆∞(𝐺̅𝐺) = 𝑛𝑛 − 𝜆𝜆2(𝐺𝐺). 
 
The Cartesian product G x H of graphs G and H is the graph with the vertex set V(G) x V(H) 
and edges (u, v) (u', v') if u = u' and vv' ∈ E(H) or uu' ∈ E(G) and v = v'. 

2233



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 
 

© IEOM Society International 
 

 
Proposition 2.5 (Fiedler 1973). The Laplacian eigenvalues of the Cartesian product G x H 
are precisely all sums 
 

 𝜆𝜆𝑖𝑖(𝐺𝐺) +  𝜆𝜆𝑗𝑗(𝐻𝐻), 𝑖𝑖 = 1, . . . , |𝐺𝐺|, 𝑗𝑗 = 1 , . . . , | 𝐻𝐻 |. 
 
In particular, 
 
                                  𝜆𝜆2(𝐺𝐺 x 𝐻𝐻) = min {𝜆𝜆2(𝐺𝐺), 𝜆𝜆2(𝐻𝐻)} and 𝜆𝜆∞(𝐺𝐺 𝑥𝑥 𝐻𝐻) = 𝜆𝜆∞(𝐺𝐺) + 𝜆𝜆∞(𝐻𝐻) 
 
for nonnegatively weighted graphs G and H. 
 
Let us mention some known bounds on 𝜆𝜆∞. First (Anderson and Morley 1985)  
 

𝜆𝜆∞ ≤ max  {𝑑𝑑(𝑢𝑢)  +  𝑑𝑑(𝑢𝑢) |𝑢𝑢𝑢𝑢 ∈  𝐸𝐸(𝐺𝐺)} 
 
where d(u) is the degree of the vertex u (the sum of the weights of edges incident with u in 
the weighted case). If G is connected then, in the above inequality, there is equality if and 
only if G is bipartite semiregular. Also (Kel’mans 1967), 𝜆𝜆∞ ≤ 𝑛𝑛 with equality if and only if 
the complement of G is not connected. Let us mention two other relations about 𝜆𝜆∞: 
 
                                            ∑ 𝜆𝜆𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 2|𝐸𝐸(𝐺𝐺)| = ∑ 𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑉𝑉   
 
and (Fiedler 1973)  

𝜆𝜆∞ ≥
𝑛𝑛

𝑛𝑛 − 1
 max  {𝑑𝑑(𝑣𝑣)| 𝑣𝑣 ∈  𝑉𝑉(𝐺𝐺)} 

 
      The Laplacian spectrum can directly be obtained from the adjacency spectrum in case G 
is an (unweighted) d-regular graph. Let A be the adjacency matrix of G and 𝜇𝜇1 ≤ 𝜇𝜇2 ≤ .  .  .≤
𝜇𝜇𝑛𝑛 its eigenvalues. Then 𝑑𝑑 − 𝜇𝜇𝑛𝑛 ≤.  .  .≤ 𝑑𝑑 − 𝜇𝜇1 are the Laplacian eigenvalues of G 
(Cvetkovic 1979). We will use this relation in the next two sections, since most graphs 
considered there will be regular unweighted. The adjacency spectrum has been more studied 
so far, and all the facts we need may be found in (Cvetkovic 1979). 
 
3. MAX-CUT AND EIGENVALUES IN SPECIAL CLASSES 
 
       In this section we examine two classes of graphs for for which the value of max-cut is 
known, and where the eigenvalue upper bound is not optimum. For Kneser graphs K(n, r) the 
eigenvalue upper bound agrees with an upper bound obtained from the size of maximum 
clique, and it is quite satisfactory. On the contrary, the boundis poor for some circulants. We 
exhibit a sequence {Gn} of graphs of order n where |𝐸𝐸(𝐺𝐺𝑛𝑛)| −𝑀𝑀𝑀𝑀(𝐺𝐺𝑛𝑛) is increasing while 
|𝐸𝐸(𝐺𝐺𝑛𝑛)| − 1

4
𝜆𝜆∞𝑛𝑛 is bounded. 

       Kneser graphs. Kneser graph K(n, r) is the graph whose vertex set is formed by all            
r-subsets of an n-set, and two r-subsets form an edge if they are disjoint. We will consider 
only case r = 2. Since K(n, 2) = 𝐿𝐿(𝐾𝐾𝑛𝑛) �������� ,the complement of the line graph of Kn, we have 
 

𝜆𝜆∞𝐾𝐾(𝑛𝑛, 2) = 𝜆𝜆∞𝐿𝐿(𝐾𝐾𝑛𝑛) �������� = �
𝑛𝑛
2
� − 𝑛𝑛.  
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      The exact value of max-cut in K(n, 2) has been found in (Poljak and Tuza 1987). The 
max-cut is formed by 𝛿𝛿(S) for S = {{i, j} | min (i,j) ≤ Pn} where 𝑃𝑃𝑛𝑛 = �(2 − √2 )𝑛𝑛 2� �. It is 
more informative to look at the bipartite density instead of the value of max-cut. (The 
bipartite density of a graph G is defined as the ratio MC(G)/|E(G)|.) Since each edge belongs 
to the same number of maximum cliques, the bipartite density of a Kneser graph is bounded 
by the bipartite density of its maximum clique. The upper bound on the bipartite density of 
K(n, 2) derived from 𝜆𝜆∞ is 
 

1
2

+
1

𝑛𝑛 − 2
 

 
It is compared with the bound obtained from the size of maximum clique in the following 
table. 
 

 
Kneser graph bound from max. clique eigenvalue u.b. 
K(4n, 2) 1

2
+

1
4𝑛𝑛 − 2

 
 

1
2

+
1

4𝑛𝑛 − 2
 

 
K(4n+1, 2) 1

2
+

1
4𝑛𝑛 − 2

 
 

1
2

+
1

4𝑛𝑛 − 1
 

 
K(4n + 2, 2) 1

2
+

1
4𝑛𝑛 − 2

 
 

1
2

+
1

4𝑛𝑛
 

 
K(4n + 3, 2) 1

2
+

1
4𝑛𝑛 − 2

 
 

1
2

+
1

4𝑛𝑛 + 1
 

 
 

For a general Kneser graph K(n, r), the maximum eigenvalue 
 

 

𝜆𝜆∞�𝐾𝐾(𝑛𝑛, 𝑟𝑟)� = �
𝑛𝑛 − 𝑟𝑟
𝑟𝑟

� �
𝑛𝑛 − 𝑟𝑟 − 1
𝑟𝑟 − 1

� 
 
has been determined by (Lovász 1979). This gives an upper bound 1/2(1 + r/(n− r)) on the 
bipartite density of K(n, r), and the bound is very close to that derived from the size of the 
maximum clique. The exact solution is known only for n ≤ (4.3 + o(l)) r (Poljak and  Tuza 
1987). 
       Circulants. Let w = (w1, w2, . . . , wn-1) be a real vector such that wi = wn-i, for all i. The  
w-circulant is the weighted graph Cw with vertices 0, 1, ..., n − 1 and the weights wj-1 on the 
edge ij , i < j . For example, cycles are w-circulants with w1= wn-1 = 1 and wi = 0 otherwise. 
     Denote by 𝑑𝑑(𝑤𝑤) ≔ ∑ 𝑤𝑤𝑖𝑖

𝑛𝑛−1
𝑖𝑖=1 . Let w(i) be the vector with i-th and (n − i)-th entry equal 1 

and equal 0 otherwise. Denote by Ai the n x n matrix with entries 0 except (Ai)jk = 1 if k − J = 
i (mod n). It is well known (Cvetkovic 1979) that the eigenvalues of A1 are the n-th roots of 
unity, and that 𝐴𝐴1 = 𝐴𝐴1𝑖𝑖 . We have 
 
Lemma 3.1. The Laplacian matrix of Cw is given by 
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𝑄𝑄(𝐶𝐶𝑤𝑤) = 𝑑𝑑(𝑤𝑤)𝐼𝐼 −�𝑤𝑤𝑗𝑗𝐴𝐴1
𝑗𝑗

𝑛𝑛−1

𝑗𝑗=1

 

 
and its spectrum consists of numbers 
 
                                            

𝑣𝑣𝑝𝑝 = 𝑑𝑑(𝑤𝑤)�𝑤𝑤𝑗𝑗 exp(
2𝜋𝜋𝜋𝜋
𝑛𝑛
𝑗𝑗𝑗𝑗), 𝑝𝑝 = 0, 1, . . . ,𝑛𝑛 − 1

𝑛𝑛−1

𝑗𝑗=1

 

. 
where i is the imaginary unit.  
 
     Notice that v0 = 0 and some vp may have the same value. We will consider only a subclass 
of circulants in the sequel. We denote by Cn,r the circulant given by w1 = wn-1 = wr= wn-r = 1 
and wi = 0 otherwise. Mention that, for r < n/2, Cn,r is a 4-regular graph consisting of a cycle 
of length n and all chords connecting vertices ofdistance r on the cycle. The exact value of 
max-cut in Cn,r has been found in ( Poljak and  Turzik 1986) [PT2]. 
 
Proposition 3.2 ( Poljak and  Turzik 1986) The max-cut of Cn,r, r < n/2, is given by 
МС(Сn,r) = 2n – d where     d = min(p + |tn – pr|) and the minimum is taken over pairs p, t of 
nonnegative integers satisfying p = n (mod 2) and t ≠ r (mod 2).  
 
      Mention that one can compute d by examining all values of t = 0, 1, ..., n and taking the 
best p for each t. The case r = n/2 is not so interesting since the circulant C2r,r is either 
bipartite or becomes bipartite after deleting two edges. It follows from Lemma 3.1 that 
 

(6) 𝜆𝜆∞�𝐶𝐶𝑛𝑛,𝑟𝑟� = 4 − 2 min
0≤𝑝𝑝≤𝑛𝑛−1

�𝑐𝑐𝑐𝑐𝑐𝑐 2𝜋𝜋𝜋𝜋
𝑛𝑛

+ 𝑐𝑐𝑐𝑐𝑐𝑐 2𝜋𝜋𝜋𝜋𝜋𝜋
𝑛𝑛
� 

 
for r < n/2. Using (6) and Proposition 3.2 we compare the eigenvalue upper bound with the 
exact value of MC(Cn,r). The results, for some small values of n and r, are in the following 
table. We excluded C5,2 (K5), and the pairs n even, r odd since Cn,r is bipartite for such 
parameters. It will be shown in the next section that the upper bound is exact for complete 
and bipartite regular graphs. 
 

n r MC(Cn,r) 𝜆𝜆∞ . n/4 
6 
7 
7 
8 
9 
9 
9 
10 
10 
11 
11 
11 
11 
12 
12 
13 

2 
2 
3 
2 
2 
3 
4 
2 
4 
2 
3 
4 
5 
2 
4 
2 

8 
10 
10 
12 
12 
14 
12 
14 
16 
16 
18 
18 
16 
18 
18 
18 

9 
10.9 
10.9 
12        exact value 
13.5 
15.5 
13.5 
15.6 
18.1 
16.5 
19.8 
19.8 
16.5 
18        exact value 
20.2 
20.2 
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13 
13 
13 
13 
14 
14 
14 
15 
15 
15 
15 
15 
15 
16 
16 

3 
4 
5 
6 
2 
4 
6 
2 
3 
4 
5 
6 
7 
2 
4 

22 
22 
20 
18 
20 
22 
24 
22 
26 
24 
24 
24 
22 
24 
28 

24.2 
24.2 
21.6 
20.2 
21.8 
24.7 
26.6 
23.1 
28.4 
27.1 
26.1 
27.1 
23.1 
24.7 
29.6 

 
 
Since it seems difficult to find an explicit formula for 𝜆𝜆∞�𝐶𝐶𝑛𝑛,𝑟𝑟�, we will investigate two 
special classes. 
 
     Circulants Сп,2. Using Proposition 3.2 we get 
 
                                 MC(C4k,2) = 6k , and MC(C4k + i,2) = 6k + 2(i - 1), i = 1, 2, 3 . 

For k large we have 𝜆𝜆∞C4k,2 = 6.25, which gives an upper bound 6.25k (while the actual value 
is 6k). 

     Circulants Cr2 + 1,r , r even. Lising Proposition 3.2 we get MC(Cr2 + 1,r) = 2n - 2r =2(r2 - r 
+ 1). The maximum eigenvalue can be estimated 

                                     𝜆𝜆∞ (Cr2 + 1,r) = 8 - cr-2 + O(r-3) (c ~ 2𝜋𝜋2). 

Hence the eigenvalue upper bound tends to 2n - 𝜋𝜋
2

2
 . 

     Ramanujan graphs are r-regular graphs for which 

                                     𝜆𝜆2(𝐺𝐺) ≥ 𝑟𝑟 − 2�(𝑟𝑟 − 1)  and  𝜆𝜆∞ ≤ 𝑟𝑟 + 2�(𝑟𝑟 − 1). 

This interesting class of graphs was introduced by Lubotzky, Phillips and Sarnak (Lubotzky 
et al. 1988)[LPS], and for any r = p + 1, where p is a prime congruent to 1 mod 4, an infinite 
family was constructed. We have MC(G) ≤ 1

4
𝑛𝑛𝑛𝑛 + 1

2
𝑛𝑛�(𝑟𝑟 − 1)  for a Ramanujan graph G. 

4. EXACT GRAPHS 
 
      The eigenvalue upper bound of Theorem 2.2 can be tight only in case that we have large 
cuts separating two large sets of vertices (each close to half of the vertices). Examples of such 
graphs are complete graphs and their Cartesian products, or tensor (categorical) products. 
In this section we describe some classes for which the upper bound is best possible. 
For simplicity, we restrict ourselves to graphs ofeven order only. Let us call a graph G exact 
if MC(G) = 𝜆𝜆∞n/4. We show that the following graphs are exact (with possible restriction on 
even parity of some parameters): complete graphs and their categorical and cartesian 
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products, bipartite regular graphs, line graphs of semiregular bipartite graphs, line graph 
L(K4k+1), complement of L(Km,n). We also show thatexact graphs are closed under the 
cartesian product. The maximal cuts in these graphs are easily found, and Theorem 2.2 
provides a proof of their optimality. The used facts on 𝜆𝜆∞ may be found in (Cvetkovic 1979) 
(cf. remark in the end of Section 2). 
 
Proposition 4.1. The cartesian product G x H of two exact graphs is exact. 
 
Proof. We have 𝜆𝜆∞(G x H) = 𝜆𝜆∞(G) + 𝜆𝜆∞(H) by Proposition 2.5. Conversely, let 𝛿𝛿(V0) and 
𝛿𝛿(W0) be the maximal cut of G and H, respectively. Then |V0|= 1

2
 |V(G)|, W0= 1

2
 |V(H)|, and 𝛿𝛿 

(V0 x W0 ∪(V(G)\V0) x (V(H)\W0)) is the maximal cut in the product. 
 
     Complete graphs. We have 𝜆𝜆∞Kn = n. The max-cut in Kn is obviously �𝑛𝑛

2
� �𝑛𝑛

2
� 

which agrees with the upper bound. Hence the cartesian product ofcomplete graphs of even 
order is exact. We show that also complements of these products are exact. 
 
     Categorical product. G ⊗H of G and H is the graph with vertex set V(G) x V(H) and 
edges (u, v) (u', v') if uu' ∈ E(G) and vv' ∈ E(H). 
 
The product Km ⊗ Kn of complete graphs equals 𝐾𝐾𝑚𝑚 × 𝐾𝐾𝑛𝑛�����������, the complement of their cartesian 
product. Since 
 

𝜆𝜆∞𝐺𝐺 × 𝐻𝐻�������� = 𝑚𝑚𝑚𝑚 − 𝜆𝜆2(𝐺𝐺 × 𝐻𝐻) = 𝑚𝑚𝑚𝑚 − min{𝜆𝜆2(𝐺𝐺),𝜆𝜆2(𝐻𝐻)}, 
 
where n = |G| and m = | H | , we have 𝜆𝜆∞(𝐾𝐾𝑛𝑛  ⊗  𝐾𝐾𝑚𝑚) = 𝑚𝑚𝑚𝑚 − min(𝑚𝑚,𝑛𝑛).  
 
Proposition 4.2. Let n ≤ 𝑚𝑚, n even. Then 𝐾𝐾𝑛𝑛  ⊗  𝐾𝐾𝑚𝑚 is exact. 
 
Proof.The maximal cut is 𝛿𝛿({l,..., 1

2
𝑛𝑛} x {l,...,m}). 

 
The results easily generalize to products of greater number of complete graphs. In particular, 
the max-cut in the complement of d-dimensional cartesian cube is 2𝑑𝑑−1(2𝑑𝑑−1 − 1). 
 
     Bipartite regular graphs are exact, since 𝜆𝜆∞(G) = 2r for an r-regular bipartite graph G. 
 
     Line graphs of bipartite graphs and their complements. A bipartite graph G is                
(r, s)-semiregular if r and s are the degrees in either bipartite class. If r ≠1 and s ≠1, we have 
 
                                                𝜆𝜆∞L(G) = r + s , and 
                                                𝜆𝜆∞𝐿𝐿(𝐺𝐺)������ = |𝐸𝐸(𝐺𝐺)| − 𝑟𝑟 − 𝑠𝑠 + 𝜆𝜆𝑛𝑛−1(𝐺𝐺),    𝑛𝑛 = |𝑉𝑉(𝐺𝐺)|. 
 
In particular, for m, n ≠ 1, we have 
 

𝜆𝜆∞𝐿𝐿(𝐾𝐾𝑚𝑚,𝑛𝑛)���������� = 𝑚𝑚𝑚𝑚 − min(𝑚𝑚,𝑛𝑛). 
 
Proposition 4.3. Let G be a bipartite (r, s)-semiregular graph where both r and s are even. 
Then L(G) is exact. 
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Proof. The edge set E(G) can be decomposed into two (1
2
 r, 1

2
 s)-semiregular subgraphs which 

form the optimum bipartition of L(G). The eixstence ofsuch decomposition of E(G) is well 
known. 
 
Proposition 4.4. Let n ≤ 𝑚𝑚, n even. Then 𝐿𝐿(𝐾𝐾𝑚𝑚,𝑛𝑛)���������� is exact. 
 
Proof. We have 𝜆𝜆∞= n(m -1). The max-cut is obtained by 𝛿𝛿({𝑖𝑖𝑖𝑖│𝑖𝑖 = 1, . . . ,1/2 𝑛𝑛, 𝑗𝑗 =
1, . . . ,𝑚𝑚}). 
 
     Line graphs of complete graphs. We have 𝜆𝜆∞L(Kn) = 2(n - 1). 
 
Proposition 4.5. L(K4r+1) is exact. 
 
Proof. It is well-known that K4r+1 has a 2r-regular factor, which is the maximal cut in the line 
graph. 
 
Let us remark that also the circulants C8,2 and С12,2 are exact. 
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