Eigenvalues and the MAX-CUT Problem

Mochamad Suyudi, Sukono
Department of Mathematics, Faculty of Mathematics and Natural Sciences
Universitas Padjadjaran, Indonesia
moch.suyudi@gmail.com, sukono@unpad.ac.id
Mustafa Mamat
Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin
Tembila Campus, 2200 Besut, Terengganu, Malaysia
musmat567@,gmail.com

Abdul Talib Bon
Department of Production and Operations, University Tun Hussein Onn Malaysia, Johor, Malaysia
talibon@gmail.com

Abstract

The max-cut problem is one ofthe well known and most studied hard optimization problems. In this paper we present an easily computable upper bound on the max-cut based on the maximum eigenvalue of an associated matrix. The connection between eigenvalues and cuts in graphs has been first discovered by Fiedler. The eigenvalue based methods have proved to be useful also for some other problems, e.g. expanding properties of graphs, isoperimetric numbers of graphs, etc.

Keywords

max-cut problem, maximum eigenvalue, Exact Graphs.

1. Introduction

The max-cut problem is one ofthe well known and most studied hard optimization problems. It can be stated as follows. Given an undirected graph $G=(V, E)$ with edge weights $c_{i j} \in R$ for all $i j \in E$, find a cut $\delta(S)$ in G for which $c(\delta(S)):=\sum_{i j \in \delta(S)} c_{i j}$ is maximum. Here $\delta(S)$ denotes the set of edges $\{i j \mid i \in S, j \notin S\}$ for $S \subset V$.

The max-cut problem is known to be polynomially solvable for some classes of graphs: for planar graphs (Orlova and Dorfman 1972), (Hadlock 1975)), for graphs not contractible to K_{5} (Barahona 1983), for weakly bipartite graphs (Grotschelânâ and Pulleyblank 1981), for graphs without long odd cycles (Grötschel and Nemhauser 1984). (Thelatterclasses only foi nonnegative weights.) The max-cut problem is NP-complete even for the cardinality version, called the maximum bipartite subgraph problem, where all weights $c_{i j}=1$ (Karp1972).

A practical algorithm for solving large instances of the max-cut problem has been developed in (Barahona et al. 1988), where also some applications are presented. Another application has been given in (Nešetřil and Poljak 1986). A simple polynomial time heuristic that guarantees a probabilistic lower bound appeared in (Poljak and Turzik 1986).

In this paper we present an easily computable upper bound on the max-cut based on the maximum eigenvalue of an associated matrix. The connection between eigenvalues and cuts in graphs has been first discovered by Fiedler (Fiedler 1973). The eigenvalue based methods have proved to be useful also for some other problems, e.g. expanding properties of graphs (Alon 1986), (Alon and Milman 1985), (Tanner 1984), isoperimetric numbers of graphs, etc.

The basic result, an inequality for the max-cut, is derived in Section 2. In Section 3 we compare the eigenvalue upper bound with the actual size of maximum bipartite subgraph in two classes, Kneser graphs and circulants, where the exact solution is known. It appears that the gap between the optimum value and the upper bound can be arbitrarily large. On the other hand, the bound is exact for some other classes which are presented in Section 4.

2. BASIC RESULTS ON THE LAPLACIAN EIGENVALUES

Let $G=(\mathrm{V}, E)$ be a graph of order n without loops and multiple edges. The difference Laplacian matrix $Q=Q(G)$ of G is an $n \times n$ matrix with entries $q_{i j}$ defined as follows.
(1) $q_{i j}=\left\{\begin{array}{lr}d_{i} & \text { the degree of the } i-\text { th vertex, if } i=j \\ -1 & \text { for } i j \in E \\ 0 & \text { otherwise }\end{array}\right.$

In other words, $Q=D-A$ where A is the adjacency matrix of G and D is the diagonal matrix with vertex degrees on the main diagonal. The definition is extended to a weighted graph, with weight $c_{i j}$ on an edge $i j$ and $c_{i j}=0$ otherwise, as follows.
(2) $q_{i j}=\sum_{j=1}^{n} c_{i j}$

$$
q_{i j}=-c_{i j} \text { for } i \neq j
$$

In case all weights are nonnegative, the Laplacian Q is a positive semidefinite matrix with the smallest eigenvalue $\lambda_{1}=0$ (a corresponding eigenvector has all coordinates equal to 1). The eigenvalues of $Q(G)$ will always be enumerated in the increasing order $\lambda_{1} \leq \lambda_{2} \leq$ $\ldots \leq \lambda_{n}$ repeated according to their multiplicity. We will use the notation $\lambda_{k}=\lambda_{k}(G)$ to denote the k-th smallest eigenvalue of $Q(G)$, counting the multiplicites. Instead of λ_{n} we will write also λ_{∞} for the maximum eigenvalue of G.

Lemma 2.1. Let G be a weighted graph. We have
(3) $c(\delta(S)) \leq \lambda_{\infty} \frac{|S|(n-|S|)}{n}$ for any subset S of vertices.

Proof. It is well known (see e.g. [L, Theorem 3.2.1]) that
(4) $\lambda_{\infty}=\max _{x \neq 0} \frac{x^{T} Q x}{x^{T} x}$
for a symmetric matrix Q. Further, we have $x^{T} Q x=\sum_{i j \in E} c_{i j}\left(x_{i}-x_{j}\right)^{2}$ for any $x=\left(x_{i}\right)_{i \in V}$, since Q was defined by (2). Given a subset $S \subset V$, define x by

$$
x_{i}:=\left\{\begin{array}{lr}
n-s \text { for } i \in S \\
-S \quad \text { for } i \notin S
\end{array}\right.
$$

where $s=|S|$. Then we have
(5) $x^{T} Q x=\sum_{i j \in E} c_{i j}\left(x_{i}-x_{j}\right)^{2}=\sum_{i j \in \delta(S)} c_{i j}\left(x_{i}-x_{j}\right)^{2}=n^{2} c(\delta(S))$, and $x^{T}=s(n-s)^{2}(n-s) s^{2}=s(n-s) n$. Using (4) and (5) we get

$$
\lambda_{\infty} \geq \frac{n c(\delta(S))}{s(n-s)}
$$

and (3) follows.
Let us denote by $M C(G):=\max _{S \subset V} c(\delta(S))$, the max-cut in G. Since $|S|(n-|S|) \leq n^{2} / 4$ for any $S \subset V$, we have
Theorem 2.2. Let G be a weighted graph. Then $M C(G) \leq \lambda_{\infty} \frac{n}{4}$.
We notice that for odd n the above bound can be sharpened slightly:

$$
M C(G) \leq \frac{\lambda_{\infty}}{n}\left\lceil\frac{n}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor
$$

The consequences of this result will be exploited in the subsequent sections. Let us present now few other results on the Laplacian eigenvalues of a graph. It has been shown in (Fiedler 1973), (Anderson and Morley 1985) that $\lambda_{\infty}(G)=\lambda_{2}(\bar{G})$ for an unweighted graph G and its complement G. We extend this equality for nonnegatively weighted graphs.

Let G be a weighted graph with a weight function c. We define the complement of G as the weighted graph \bar{G} on the same vertex set and with the weight function \bar{c} where

$$
\bar{c}_{i j}:= \begin{cases}1-c_{i j} & \text { if } i \neq j \\ 0 & \text { if } i=j\end{cases}
$$

Clearly, $Q(G)+Q(\bar{G})=n I-J$ where I is the identity matrix and J is the matrix with all entries equal 1. Let us denote by $\mu(B, x)$ the characteristic polynomial of B, and let, for a $\operatorname{graph} G, \mu(G, x):=\mu(Q(G), x)$.

Lemma 2.3. $\quad \mu(\bar{G}, x)=(-1)^{n+1} \frac{x}{n-x} \mu(G, n-x)$.
Proof. $\quad \mu(\bar{G}, x)=\operatorname{det}(x I-Q(\bar{G}))=\operatorname{det}(x I-n I+J+Q(G))=(-1)^{n} \operatorname{det}((n-x) I-$ $J-Q(G)=(-1)^{n} \mu(Q(G)+J, n-x)$. But in general $\mu(Q+J, t)$ is nicely related to $\mu(Q, t)$ in the case when the column sums of Q are all equal to 0 . In the matrix $t I-Q-J$ replace the first row by the sum of all rows.

Each entry in this row becomes equal to $t-n$. Subtracting this row divided by $t-n$ from all the remaining rows does not change the determinant. Denote the obtained matrix by B_{t}. On the other hand, if we replace the first row of $t I-Q$ by the sum of all rows in this matrix we get a matrix which has exactly the same entries as B_{t} except for the first row where, instead of $t-\mathrm{n}$, we have t. Consequently,

$$
\frac{\mu(Q+J, t)}{t-n}=\frac{\mu(Q, t)}{t}
$$

From this and the calculation at the beginning of the proof, our lemma follows trivially.
Corollary 2.4. Let $\lambda_{1}(G) \leq \lambda_{2}(G) \leq \ldots \leq \lambda_{n}(G)$ be the Laplacian eigenvalues of a nonnegatively weighted graph G. Then $\lambda_{\infty}(\bar{G})=n-\lambda_{2}(G)$.

The Cartesian product $G \times H$ of graphs G and H is the graph with the vertex set $V(G) \times V(H)$ and edges $(u, v)\left(u^{\prime}, v^{\prime}\right)$ if $u=u^{\prime}$ and $v v^{\prime} \in E(H)$ or $u u^{\prime} \in E(G)$ and $v=v^{\prime}$.

Proposition 2.5 (Fiedler 1973). The Laplacian eigenvalues of the Cartesian product $G \times H$ are precisely all sums

$$
\lambda_{i}(G)+\lambda_{j}(H), i=1, \ldots,|G|, \quad j=1, \ldots,|H| .
$$

In particular,

$$
\lambda_{2}(G \times H)=\min \left\{\lambda_{2}(G), \lambda_{2}(H)\right\} \text { and } \lambda_{\infty}(G \times H)=\lambda_{\infty}(G)+\lambda_{\infty}(H)
$$

for nonnegatively weighted graphs G and H.
Let us mention some known bounds on λ_{∞}. First (Anderson and Morley 1985)

$$
\lambda_{\infty} \leq \max \{d(u)+d(u) \mid u v \in E(G)\}
$$

where $d(u)$ is the degree of the vertex u (the sum of the weights of edges incident with u in the weighted case). If G is connected then, in the above inequality, there is equality if and only if G is bipartite semiregular. Also (Kel'mans 1967), $\lambda_{\infty} \leq n$ with equality if and only if the complement of G is not connected. Let us mention two other relations about λ_{∞} :

$$
\sum_{i=1}^{n} \lambda_{i}=2|E(G)|=\sum_{v \in V} d(v)
$$

and (Fiedler 1973)

$$
\lambda_{\infty} \geq \frac{n}{n-1} \max \{d(v) \mid v \in V(G)\}
$$

The Laplacian spectrum can directly be obtained from the adjacency spectrum in case G is an (unweighted) d-regular graph. Let A be the adjacency matrix of G and $\mu_{1} \leq \mu_{2} \leq \ldots \leq$ μ_{n} its eigenvalues. Then $d-\mu_{n} \leq \ldots \leq d-\mu_{1}$ are the Laplacian eigenvalues of G (Cvetkovic 1979). We will use this relation in the next two sections, since most graphs considered there will be regular unweighted. The adjacency spectrum has been more studied so far, and all the facts we need may be found in (Cvetkovic 1979).

3. MAX-CUT AND EIGENVALUES IN SPECIAL CLASSES

In this section we examine two classes of graphs for for which the value of max-cut is known, and where the eigenvalue upper bound is not optimum. For Kneser graphs $K(n, r)$ the eigenvalue upper bound agrees with an upper bound obtained from the size of maximum clique, and it is quite satisfactory. On the contrary, the boundis poor for some circulants. We exhibit a sequence $\left\{G_{n}\right\}$ of graphs of order n where $\left|E\left(G_{n}\right)\right|-M C\left(G_{n}\right)$ is increasing while $\left|E\left(G_{n}\right)\right|-\frac{1}{4} \lambda_{\infty} n$ is bounded.

Kneser graphs. Kneser graph $K(n, r)$ is the graph whose vertex set is formed by all r-subsets of an n-set, and two r-subsets form an edge if they are disjoint. We will consider only case $r=2$. Since $K(n, 2)=\overline{L\left(K_{n}\right)}$, the complement of the line graph of K_{n}, we have

$$
\lambda_{\infty} K(n, 2)=\lambda_{\infty} \overline{L\left(K_{n)}\right.}=\binom{n}{2}-n .
$$

The exact value of max-cut in $K(n, 2)$ has been found in (Poljak and Tuza 1987). The max-cut is formed by $\delta(S)$ for $S=\left\{\{i, j\} \mid \min (i, j) \leq P_{n}\right\}$ where $P_{n}=\left[(2-\sqrt{2})^{n / 2}\right]$. It is more informative to look at the bipartite density instead of the value of max-cut. (The bipartite density of a graph G is defined as the ratio $M C(G) /|E(G)|$.) Since each edge belongs to the same number of maximum cliques, the bipartite density of a Kneser graph is bounded by the bipartite density of its maximum clique. The upper bound on the bipartite density of $K(n, 2)$ derived from λ_{∞} is

$$
\frac{1}{2}+\frac{1}{n-2}
$$

It is compared with the bound obtained from the size of maximum clique in the following table.

Kneser graph	bound from max. clique	eigenvalue u.b.
$K(4 n, 2)$	$\frac{1}{2}+\frac{1}{4 n-2}$	$\frac{1}{2}+\frac{1}{4 n-2}$
$K(4 n+1,2)$	$\frac{1}{2}+\frac{1}{4 n-2}$	$\frac{1}{2}+\frac{1}{4 n-1}$
$K(4 n+2,2)$	$\frac{1}{2}+\frac{1}{4 n-2}$	$\frac{1}{2}+\frac{1}{4 n}$
$K(4 n+3,2)$	$\frac{1}{2}+\frac{1}{4 n-2}$	$\frac{1}{2}+\frac{1}{4 n+1}$

For a general Kneser graph $K(n, r)$, the maximum eigenvalue

$$
\lambda_{\infty}(K(n, r))=\binom{n-r}{r}\binom{n-r-1}{r-1}
$$

has been determined by (Lovász 1979). This gives an upper bound $1 / 2(1+r /(n-r))$ on the bipartite density of $K(n, r)$, and the bound is very close to that derived from the size of the maximum clique. The exact solution is known only for $n \leq(4.3+o(1)) r$ (Poljak and Tuza 1987).

Circulants. Let $w=\left(w_{1}, w_{2}, \ldots, w_{n-1}\right)$ be a real vector such that $w_{i}=w_{n-i}$, for all i. The w-circulant is the weighted graph C_{w} with vertices $0,1, \ldots, n-1$ and the weights w_{j-1} on the edge $i j, i<j$. For example, cycles are w-circulants with $w_{1}=w_{n-1}=1$ and $w_{i}=0$ otherwise.

Denote by $d(w):=\sum_{i=1}^{n-1} w_{i}$. Let $w^{(i)}$ be the vector with i-th and $(n-i)$-th entry equal 1 and equal 0 otherwise. Denote by A_{i} the $n \times n$ matrix with entries 0 except $\left(A_{i}\right)_{j k}=1$ if $k-J=$ $i(\bmod n)$. It is well known (Cvetkovic 1979) that the eigenvalues of A_{1} are the n-th roots of unity, and that $A_{1}=A_{1}^{i}$. We have

Lemma 3.1. The Laplacian matrix of C_{w} is given by

$$
Q\left(C_{w}\right)=d(w) I-\sum_{j=1}^{n-1} w_{j} A_{1}^{j}
$$

and its spectrum consists of numbers

$$
v_{p}=d(w) \sum_{j=1}^{n-1} w_{j} \exp \left(\frac{2 \pi i}{n} j p\right), \quad p=0,1, \ldots, n-1
$$

where i is the imaginary unit.
Notice that $v_{0}=0$ and some v_{p} may have the same value. We will consider only a subclass of circulants in the sequel. We denote by $C_{n, r}$ the circulant given by $w_{1}=w_{n-1}=w_{r}=w_{n-r}=1$ and $w_{i}=0$ otherwise. Mention that, for $r<n / 2, C_{n, r}$ is a 4 -regular graph consisting of a cycle of length n and all chords connecting vertices ofdistance r on the cycle. The exact value of max-cut in $C_{n, r}$ has been found in (Poljak and Turzik 1986) [PT2].

Proposition 3.2 (Poljak and Turzik 1986) The max-cut of $C_{n, r}, r<n / 2$, is given by $M C\left(C_{n, r}\right)=2 n-d$ where $\quad d=\min (p+|t n-p r|)$ and the minimum is taken over pairs p, t of nonnegative integers satisfying $p=n(\bmod 2)$ and $t \neq r(\bmod 2)$.

Mention that one can compute d by examining all values of $t=0,1, \ldots, n$ and taking the best p for each t. The case $r=n / 2$ is not so interesting since the circulant $C_{2 r, r}$ is either bipartite or becomes bipartite after deleting two edges. It follows from Lemma 3.1 that
(6) $\lambda_{\infty}\left(C_{n, r}\right)=4-2 \min _{0 \leq p \leq n-1}\left(\cos \frac{2 \pi p}{n}+\cos \frac{2 \pi p r}{n}\right)$
for $r<n / 2$. Using (6) and Proposition 3.2 we compare the eigenvalue upper bound with the exact value of $M C\left(C_{n, r}\right)$. The results, for some small values of n and r, are in the following table. We excluded $C_{5,2}\left(K_{5}\right)$, and the pairs n even, r odd since $C_{n, r}$ is bipartite for such parameters. It will be shown in the next section that the upper bound is exact for complete and bipartite regular graphs.

n	M	$M C\left(C_{n, r}\right)$		$\lambda_{\infty} \cdot n / 4$
6	2	8	9	
7	2	10	10.9	
7	3	10		10.9
8	2	12		12
9	2	12	exact value	
9	3	14	13.5	
9	4	12	15.5	
10	2	14	13.5	
10	4	16	15.6	
11	2	16	18.1	
11	3	18	16.5	
11	4	18	19.8	
11	5	16	19.8	
12	2	18	16.5	
12	4	18	18	exact value
13	2	18	20.2	

© IEOM Society International

13	3	22	24.2
13	4	22	24.2
13	5	20	21.6
13	6	18	20.2
14	2	20	21.8
14	4	22	24.7
14	6	24	26.6
15	2	22	23.1
15	3	26	28.4
15	4	24	27.1
15	5	24	26.1
15	6	24	27.1
15	7	22	23.1
16	2	24	24.7
16	4	28	29.6

Since it seems difficult to find an explicit formula for $\lambda_{\infty}\left(C_{n, r}\right)$, we will investigate two special classes.

Circulants $\boldsymbol{C}_{\boldsymbol{n}, \mathbf{2}}$. Using Proposition 3.2 we get

$$
M C\left(C_{4 k, 2}\right)=6 k, \text { and } M C\left(C_{4 k+i, 2}\right)=6 k+2(i-1), i=1,2,3 .
$$

For k large we have $\lambda_{\infty} C_{4 k, 2}=6.25$, which gives an upper bound $6.25 k$ (while the actual value is 6 k).

Circulants $\mathbf{C r}_{\mathbf{r} 2+1, \mathbf{r}}, \mathbf{r}$ even. Lising Proposition 3.2 we get $M C\left(C_{r}{ }^{2}+1, \mathrm{r}\right)=2 n-2 r=2(\mathrm{r} 2-r$ +1). The maximum eigenvalue can be estimated

$$
\lambda_{\infty}\left(C_{r^{2}+1, r}\right)=8-c^{r-2}+O\left(r^{-3}\right)\left(c \sim 2 \pi^{2}\right) .
$$

Hence the eigenvalue upper bound tends to $2 n-\frac{\pi^{2}}{2}$.
Ramanujan graphs are r-regular graphs for which

$$
\lambda_{2}(G) \geq r-2 \sqrt{(r-1)} \text { and } \lambda_{\infty} \leq r+2 \sqrt{(r-1)}
$$

This interesting class of graphs was introduced by Lubotzky, Phillips and Sarnak (Lubotzky et al. 1988)[LPS], and for any $r=p+1$, where p is a prime congruent to $1 \bmod 4$, an infinite family was constructed. We have $M C(G) \leq \frac{1}{4} n r+\frac{1}{2} n \sqrt{(r-1)}$ for a Ramanujan graph G.

4. EXACT GRAPHS

The eigenvalue upper bound of Theorem 2.2 can be tight only in case that we have large cuts separating two large sets of vertices (each close to half of the vertices). Examples of such graphs are complete graphs and their Cartesian products, or tensor (categorical) products. In this section we describe some classes for which the upper bound is best possible. For simplicity, we restrict ourselves to graphs ofeven order only. Let us call a graph G exact if $M C(G)=\lambda_{\infty} n / 4$. We show that the following graphs are exact (with possible restriction on even parity of some parameters): complete graphs and their categorical and cartesian
products, bipartite regular graphs, line graphs of semiregular bipartite graphs, line graph $L\left(K_{4 k+1}\right)$, complement of $L\left(K_{m, n}\right)$. We also show thatexact graphs are closed under the cartesian product. The maximal cuts in these graphs are easily found, and Theorem 2.2 provides a proof of their optimality. The used facts on λ_{∞} may be found in (Cvetkovic 1979) (cf. remark in the end of Section 2).

Proposition 4.1. The cartesian product $G \times H$ of two exact graphs is exact.
Proof. We have $\lambda_{\infty}(G \times H)=\lambda_{\infty}(G)+\lambda_{\infty}(H)$ by Proposition 2.5. Conversely, let $\delta\left(V_{0}\right)$ and $\delta\left(W_{0}\right)$ be the maximal cut of G and H, respectively. Then $\left|V_{0}\right|=\frac{1}{2}|V(G)|, W_{0}=\frac{1}{2}|V(H)|$, and δ $\left(V_{0} \times W_{0} \cup\left(V(G) \mid V_{0}\right) \times\left(V(H) \mid W_{0}\right)\right)$ is the maximal cut in the product.

Complete graphs. We have $\lambda_{\infty} K_{n}=n$. The max-cut in K_{n} is obviously $\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor$
which agrees with the upper bound. Hence the cartesian product ofcomplete graphs of even order is exact. We show that also complements of these products are exact.

Categorical product. $G \otimes H$ of G and H is the graph with vertex set $V(G) \times V(H)$ and edges $(u, v)\left(u^{\prime}, v^{\prime}\right)$ if $u u^{\prime} \in E(G)$ and $v v^{\prime} \in E(H)$.

The product $K_{m} \otimes K_{n}$ of complete graphs equals $\overline{K_{m} \times K_{n}}$, the complement of their cartesian product. Since

$$
\lambda_{\infty} \overline{G \times H}=m n-\lambda_{2}(G \times H)=m n-\min \left\{\lambda_{2}(G), \lambda_{2}(H)\right\},
$$

where $n=|G|$ and $m=|H|$, we have $\lambda_{\infty}\left(K_{n} \otimes K_{m}\right)=m n-\min (m, n)$.
Proposition 4.2. Let $n \leq m$, n even. Then $K_{n} \otimes K_{m}$ is exact.
Proof.The maximal cut is $\delta\left(\left\{1, \ldots, \frac{1}{2} n\right\} \times\{1, \ldots, m\}\right)$.
The results easily generalize to products of greater number of complete graphs. In particular, the max-cut in the complement of d-dimensional cartesian cube is $2^{d-1}\left(2^{d-1}-1\right)$.

Bipartite regular graphs are exact, since $\lambda_{\infty}(G)=2 r$ for an r-regular bipartite graph G.
Line graphs of bipartite graphs and their complements. A bipartite graph G is (r, s)-semiregular if r and s are the degrees in either bipartite class. If $r \neq 1$ and $s \neq 1$, we have

$$
\begin{aligned}
& \lambda_{\infty} L(G)=r+s, \text { and } \\
& \lambda_{\infty} \overline{L(G)}=|E(G)|-r-s+\lambda_{n-1}(G), \quad n=|V(G)| .
\end{aligned}
$$

In particular, for $m, n \neq 1$, we have

$$
\lambda_{\infty} \overline{L\left(K_{m, n}\right)}=m n-\min (m, n) .
$$

Proposition 4.3. Let \boldsymbol{G} be a bipartite (r, s)-semiregular graph where both r and s are even. Then $L(G)$ is exact.

Proof. The edge set $E(G)$ can be decomposed into two $\left(\frac{1}{2} r, \frac{1}{2} s\right)$-semiregular subgraphs which form the optimum bipartition of $L(G)$. The eixstence ofsuch decomposition of $E(G)$ is well known.

Proposition 4.4. Let $n \leq m$, n even. Then $\overline{L\left(K_{m, n}\right)}$ is exact.
Proof. We have $\lambda_{\infty}=n(m-1)$. The max-cut is obtained by $\delta(\{i j \mid i=1, \ldots, 1 / 2 n, j=$ $1, \ldots, m\}$).

Line graphs of complete graphs. We have $\lambda_{\infty} L\left(K_{n}\right)=2(n-1)$.
Proposition 4.5. $L\left(K_{4 r+1}\right)$ is exact.
Proof. It is well-known that $K_{4 r+1}$ has a $2 r$-regular factor, which is the maximal cut in the line graph.

Let us remark that also the circulants $C_{8,2}$ and $C_{12,2}$ are exact.

Acknowledgements

Thank you for the program of the Academic Leadership Grant (ALG), Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran (Indonesia), which has been providing facilities to conduct a research and publication.

References

N. Alon, Eigenvalues and expanders, Combinatorica 6, (1986) 83-96.
N. Alon, V. D. Milman, λ_{1}, isoperimetric inequalities for graphs and superconcentrators, J. Comb.Th. B 38 (1985) 73-88.
W. N. Anderson, T. D. Morley, Eigenvalues of the Laplacian of a graph, Lin. Multilin. Algebra 18(1985) 141-145.
F. Barahona, The max-cut problem in graphs not contractible to K_{5}, Oper. Res. Lett. 2(1983) 107-111.
F. Barahona, M. Grötschel, M. Jünger, G. Reinelt, An application of combinatorial optimization to statistical physcis and circuit layout design, Oper. Res. 36 (1988) 493-513.
D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of graphs - Theory and applications, VEB Deutscher Verlag der Wiss. Berlin 1979/Acad. Press, N.Y. 1979.
M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (98) (1973) 298-305.
M. Grötschel and G. L. Nemhauser, A polynomial algorithm for the max-cut problem on graphs without long odd cycles, Math. Programming 29 (1984) 28-40.
M. Grotschelânâ, W. R. Pulleyblank, Weakly bipartite graphs and the max-cut problem, Oper. Res.Lett. / (1981) 23-27.
F. Hadlock, Finding a maximum cut of a planar graph in polynomial time, SIAM J. on Comp. 4 (1975) 221-225.
R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, R. E. Miller, J. W. Thatcher (eds.), Plenum Press, New York 1972, pp. 85-103.
A. K. Kel'mans, Properties of the characteristic polynomial ofa graph, "Kibernetiky - na službu kommunizmu" vol. 4, Energija, Moskva-Leningrad, 1967, pp. 27-41 (in Russian).
P. Lankaster, Theory of Matrices, Acad. Press, New York-London 1969.
L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979) 1-7.
A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica, 8 (1988) 261-277.
J. Nešetřil and S. Poljak, A remark on max-cut problem with an application to digitalanalogue convertors, Oper. Res. Lett. 4 (1986) 289-291.
G. I. Orlova and Y. G. Dorfman, Finding the maximal cut in a graph, Engrg. Cybernetics 10 (1972) 502506.
S. Poljak and Z. Tuza, Maximum bipartite subgraphs of Kneser graphs, Graphs and Combinatorics, 3(1987) 191-199.
S. Poljak and D. Turzik, A polynomial heuristic for certain subgraph optimization problems with guaranteed lower bound, Discrete Math. 58 (1986) 99-104.
R. M. Tanner, Explicit concentrators from generalized n-gons, SIAM J. Alg. Disc. Meth. 5 (1984)287-293.

Biographies

Mochamad Suyudi, is a lecturer at the Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran. Bachelor in Mathematics at the Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, and Master in Mathematics at the Faculty of Mathematics and Natural Sciences, Universitas Gajah Mada. Currently pursuing Ph.D. program in the field of Graphs at Universiti Sultan Zainal Abidin(UNISZA) Malaysia Terengganu.

Sukono is a lecturer in the Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran. Currently serves as Head of Master's Program in Mathematics, the field of applied mathematics, with a field of concentration of financial mathematics and actuarial sciences.

Abstract

Abdul Talib Bon is a professor of Production and Operations Management in the Faculty of Technology Management and Business at the Universiti Tun Hussein Onn Malaysia since 1999. He has a PhD in Computer Science, which he obtained from the Universite de La Rochelle, France in the year 2008. His doctoral thesis was on topic Process Quality Improvement on Beltline Moulding Manufacturing. He studied Business Administration in the Universiti Kebangsaan Malaysia for which he was awarded the MBA in the year 1998. He's bachelor degree and diploma in Mechanical Engineering which his obtained from the Universiti Teknologi Malaysia. He received his postgraduate certificate in Mechatronics and Robotics from Carlisle, United Kingdom in 1997. He had published more 150 International Proceedings and International Journals and 8 books. He is a member of MSORSM, IIF, IEOM, IIE, INFORMS, TAM and MIM.

Mustafa Mamat is a lecturerin the Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Malaysia. Currently serves as Dean of Graduate School Universiti Sultan Zainal Abidin, Terengganu, Malaysia. The field of applied mathematics, with a field of concentration of optimization.

