Analysis Students Abilities in Completing Mathematical Problems Dimension Three in Junior High School

Rahmi Wiganda Elastika
Master Program in Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
elastikarahmi@gmail.com

Zulkarnain
Department of Mathematics, Faculty of teacher training and science, Universitas Riau, Indonesia
stoper65@yahoo.com

Mefa Indriati
Department of Mathematics, Faculty of teacher training and science, Universitas Islam Riau, Indonesia
mefaindriati@yahoo.com

Sukono
Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
sukono@unpad.ac.com

Subiyanto
Department of Marine Sciences, Faculty of Fishery and Marine Sciences, Universitas Padjadjaran, Indonesia
subiyanto@unpad.ac.id

Abdul Talib Bon
Department of Production and Operations, University Tun Hussein Onn Malaysia, Malaysia
talibon@gmail.com

Abstract

Problems by junior high school students in learning mathematics is when solving math problems. Then conducted research aimed to find out the types and causes of errors made by students especially when completing mathematical questions on the inner circle and outer circle triangle to find alternative solutions and overcome the causes of the students' errors. The subjects of this study were students of class VIII junior high school 5 Siak Hulu and totaling 36 people. This study uses a qualitative descriptive method. Data analysis techniques are descriptive analysis techniques. The data collection method used is the test method. Based on the results of the study, there were still many students who made mistakes in solving math problems in the subject of inner circle and outer circle of triangles. The types of errors are: misconceptions, principle errors, and operating errors in which the most common mistakes are the misconceptions of painting the inner circle and the outer circle of the triangle with the number of errors 60 and the percentage of 44.44%. 54 and a percentage of 40%, and a principle error of 21 and a percentage of 15.55%.
Keywords
Dimension Three, Error Analysis of Students, Mathematical Problems, Geometry and inner circle of the outer circle of the committee.

1. Introduction

Education is a long-term investment in human resources that has strategic value for the survival of human civilization in the world. Therefore, almost all countries get education as an important and important in the context of national and state development. Educational research has recognized the value of transformation, which offers opportunities for research and rethink how appropriate and successful educational practices example in mathematics (W. Leal Filho et al. 2018).

Mathematics is a universal science that underlies the development of modern technology, has an important role in various disciplines and develops the human mind. Rapid development in information and communication technology, for the role of other possible dimensions of early mathematical abilities, such as, measurement, geometry, and patterns. The current study examines the dimensions of informal mathematical abilities by conducting analysis (Trelani F. Milburna et al. 2018). So that mastering and creating technology in the future requires strong mastery of mathematics from an early age.

Whereas from observations made by researchers by interviewing teachers in the field of mathematics in Class VIII5, Junior High School 4 Siak Hulu shows that the mathematics learning outcomes of students in the 2012-2013 school year are still below average. The repeat value of the inner circle and outer circle of the triangle is very low, the low value of students is due to the many students who make mistakes in working on the given questions. So that of the total number of students who work on the daily ulangan test there are 45% who have not met the MCC (Minimum Completion Criteria) that is equal to 75 and in the 2013-2014 school year students who do not meet the MCC on the replication of the inner circle and outer circle triangle material increase to 50% Based on this, the researcher is interested in observing whether the factors that cause students to make mistakes in solving the inner circle and outer circle problems are included in the types of errors made. In order to help and make it easy for the teacher in the field of study to find out the problem solving of the cause of the error and the type of error done by the students in working on the given questions. So the author will discuss this through research Error Analysis of Students in Completing the Triangle and Outer Circle Circle Mathematics Problems in Class VIII5 of Junior High School 4 Siak Hulu where this study uses a qualitative descriptive method.

2. Result / Experimental

2.1. Mathematical Characteristics
Mathematical characteristics in general are having abstract objects of study, objects of study that are abstract are mental or mental objects. The object of studying mathematics in school is facts, concepts, operations (skills), and principles.

In real life, however, most adults quite commonly use mathematics in everyday activities. Therefore, we can conclude that each individual, to a greater or lesser extent, have adopted the so-called Mathematical Literacy:

- The ability to understand abstract mathematical concepts,
- The ability to understand the relationships between mathematical objects,
- The ability to work with mathematical objects (Jitka Vítová, 2015).

Understanding of mathematical concepts and symbols are essential components of mathematical knowledge, Expanded vocabularies allow learners to understand commonalities and differences between items (Frieder L. Schillinger at al. 2018).

2.2. Error In Completing Math Questions.
In the steps that discuss the problem called description, students do intellectual activities that are outlined in the paper work. From the paper can be seen the ability of students. Lack of ability can also be influenced by several things that can be done by several observers that are factors that cause students' abilities:

This stronger reaction to errors could be a factor contributing to the difficulties that HMA individuals experience in learning math and doing math tasks. Mistakes are frequent events causing a response oriented, with post-error adjustments considered as an effect of attention. Because of their infrequency, errors occur unexpectedly (M. Isabel Núñez-Peña, a, b, e et al. 2017). Erroneous answers of students can be made possible because the process of receiving and organizing information that is not correct but still used by students for reasons of answering. reading skills are
well known, and there is an increase in coherence around the developing mathematical predictors as well. This achievement skill has a strong relationship. Less knowledge is, and in various types of reading and mathematics (Paul T.Cirino et al. 2017). Cause problems with inappropriate information mistakes made by students are reading based on language or misunderstanding. facilities in understanding language in several important ways to learn mathematics (Philip C. et al 1991). A student’s accuracy on drug calculation tests may be influenced by maths anxiety, which can impede one’s ability to understand and complete mathematic problems (Brett Williams et al. 2016). Mathematical anxiety (MA) affects students in various countries and at the education level. including assessment of aspects of intelligence and ability (Frieder L.Schillingera et al. 2018). revealed that positive reciprocal effects were found between (a) self-concept and achievement, (b) effort and achievement, and (c) interest and effort (Jianzhong Xu.2018). Gender gap in mathematics the literature that has previously shown that boys outperform girls in math tests This math (Juan Sebastián Muñoz.2018). Children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals’ ability levels (Brenda R.J.Jansen. et al.2013)

2.3. Review of Inner Circle Material and Triangle Outer Circles

2.3.1 Steps to paint the outer circle of a triangle:
- a) Paint an equilateral triangle
- b) Pay attention to the AB side, make any circular arc with the center of the point A, then, also make a circular arc with the center of point B and the same diameter as the previous arc, the two arcs will intersect at one point
- c) Connect the two intersection points of the arc - the arc is the line
- d) Repeat steps (2) and steps (3) on the AC and BC sides
- e) The three lines that you have made in step (3) and step (4) will intersect at a point in the triangle ABC. Name the intersection P.
- f) Point P is the center point of the outer circle of the triangle ABC AP, BP, and CP is the radius of the outer circle of the triangle.

As following figure:

![Figure 1. Outer Circle Of A Triangle](image1)

2.3.2 Painting Circles in Triangles.

The steps to paint the in circle of the triangle are as follows:
- a) Paint an equilateral triangle
- b) Attention <CAB. Make a circle with the center point of the arc Acut the AC and AB sides.
- c) Re-create the circle with the point that intersects the AC and AB sides so that there are two new points.
- d) Connect point A densatupoint by using a line and memotog BC side
- e) Repeat 3 and step 4 on <ABC and <ACB
- f) You will find point P as the intersection point of the three lines
- g) Point P is the purest point of the circle ▲ ABC. Then make a circle using the center point.

As following figure:

![Figure 2. Iner circle of a triangle](image2)
2.3.3 Calculating the radius of a circle in a triangle.
The fingers in a triangle can be calculated using a formula

\[r = \frac{t}{s} \]

\[s = \frac{1}{2} (a + b + c) \]

\[L = \sqrt{s(s-a)(s-b)(s-c)} \]

![Figure 3. Radius of a circle in a triangle](image)

2.3.4 Calculating the radius of the outer circle of the triangle.
Pay attention to the picture beside, you can find the fingers of the outer circle of the triangle with the following formula:

\[r = \frac{abc}{4L} \]

With \(r \) = the radius of the outer circle of the triangle

\[L = \sqrt{s(s-a)(s-b)(s-c)} \]

\[s = \frac{1}{2} (a + b + c) \]

![Figure 4. The radius of the outer circle of the triangle](image)

2.4. Research methods
In this study the method used is a qualitative descriptive method, that in-depth analysis can be achieved by conducting qualitative studies. Content analysis techniques are used to get a broad and broad description of student solution strategies, (content analysis technique was employed to design a condensed and broad description of the students' solution strategies)(Talton, C. F.1973).
The purpose of descriptive research is to make systematic, factual, and accurate representation of facts and characteristics of certain regional populations.

Based on the above opinion, it can be concluded that descriptive research is designed to obtain information about a symptom at the time the study was carried out. This research is directed to determine the nature of a situation when an investigation is being carried out. In this study, researchers try to describe qualitative research. We argue that qualitative inquiry is essential to the scientific process(Joanna E. M. Salee et al. 2018). Qualitative findings in ways that are informative, useful, and dialogue provoking about regulatory issues must go beyond inserting long quotes with a single sentence explanation. Artfully capturing the participants' stories within the regulatory matter under study is vital for understanding potential and actual consequences of regulations (Allison Squires et al. 2018). We are seeing the use of qualitative research methods more regularly in education (Ashley Castleberry et al. 2018). The strengths of qualitative applications in mixed-methods research using an example from a recent ulcerative colitis drug trial that indicates how they can be integrated into study findings, add rich description, and enhance study outcomes (Frances Rapport et al. 2015). Exploration is central in most qualitative research and discussing the consequences this has on the planning and conduct of qualitative studies. Thereafter, a detailed description of theoretical and practical aspects of qualitative interviewing and participant observation is presented, followed by a discussion of qualitative data analysis and issues pertaining to the portability, applicability, and quality of qualitative research (Kâre Moen et al. 2015).

2.5. Method of collecting data
Data collection method in this study is to use the results of interviews with students based on 5 essay tests or descriptions. A description test in the literature also called (essay examination) is the oldest tool for assessing learning outcomes. In general, this description test is a statement that requires students to answer it in the form of describing, explaining, discussing, comparing, giving reasons, and other similar forms in accordance with the demands of revelation by using their own words and language.

2.6. Data Analysis Techniques
a) The data analysis technique in this study is descriptive analysis, with the following steps: Check student test results.
b) The following steps are done is calculating the percentage of student errors in solving the description of the inner circle and the outer circle of the triangle

\[
p = \frac{f}{N} \times 100 \%
\]

Information:
- \(p \) = percentage
- \(f \) = frequency that is being searched for frequency
- \(N \) = number of frequencies

3. Results and Discussion

In this study a written test was held. Before giving a written test, the researcher and the teacher tested the validity of the test questions by consulting a test made to the teacher of the VIII grade mathematics content study at Siak Hulu Middle School 4 which was presented in appendix 5. Then testing the questions followed by 37 students and attended by all students.

However, this test has a reliability level of 0.881 thus all items can be stated as tests that have high reliability (r11 is much greater than 0.70). So that it can be stated that the test results of learning outcomes for each item have good quality.

Then the researcher conducted an interview:

From the interview, it was found that the lack of female students in mathematics was because students made mistakes in solving problems. To see more clearly the researchers grouped the errors into 3 errors:

a. Concept Error
 Errors in understanding concepts are mistakes made by students because of the weak concept of the steps in painting inner circles and the outer circle of triangles that are controlled by students.

b. Operation Error
 The operating error meant in this study is that the error is related to the process of processing questions such as addition, subtraction, division or division. Because even though students have mastered the concept of inner circle and outer circle triangles, but if students do not master it well or in the calculation process it will also cause errors.

c. Principle Error
 The principle error that is intended in solving the subject matter of the inner circle and the outer circle of the triangle is the error in the use of the formula, students must pay close attention to the existing formulas which will later be used. Because if students do not really remember the existing formula properly then it is not impossible that students will be wrong in applying the formula that will be used so that in the next work will also not get the right answer.

The most common mistakes students make are the misconceptions of painting inner circles and outer circles of triangles, namely the number of errors 60 and 44.44%.

<table>
<thead>
<tr>
<th>Number</th>
<th>Type Of Error</th>
<th>The Cause Of The Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Concept Error</td>
<td>Students forget and do not understand the concept used to paint outer circles and circles in triangles and then consider this material difficult and too much and some are aware of the concept of painting inner circles and outer circles of the triangle just forgetting the other steps that must be done.</td>
</tr>
<tr>
<td>2</td>
<td>Operation Error</td>
<td>Students are less careful about calculations and students consider difficult questions so that they do not solve them correctly, do not want to solve problems correctly because they are less diligent and lazy. As a result students leave their answers just before completing them correctly, in a hurry and not serious and no longer focus on working on the questions.</td>
</tr>
</tbody>
</table>
Students are confused to distinguish which formula is used to find the length of the radius of the inner circle and the outer circle of the triangle, it is not complete to write the formula and also really do not understand the formula.

We can discussion alternative problem solving. What can be attempted to overcome the mistakes of students in solving problems such as students must be diligent in repeating at home the lessons that have been obtained at school, more thoroughly in answering and reading questions, the teacher must familiarize students to solve problems with the correct problem solving steps and complete, the teacher should provide material and an easy way for students to be studied at home and the teacher asks the material at the next meeting for each student so that students are more motivated to learn.

4. Conclusion

Based on the research that has been conducted on students of class VIII5 of junior high school 4 Siak Hulu, it can be concluded that:

The types of errors that students carry out in solving math problems are the following topics: the inner circle and the outer circle of the triangle are as follows:

a) Errors related to concepts
 - Error specifying the angle bisector
 - Error determining the location of the center point
b) Errors related to Operations
 - Error in calculating
 - Error entering the known number
c) Errors related to principles
 - Error using unrelated formulas
 - Error using the formula between the inner circle and the outer circle of the triangle.

The cause of the students' mistakes is that they do not want to solve problems correctly, are less diligent and lazy in memorizing formulas. As a result, students just leave the answer before completing it correctly, are less careful about the calculation and how to solve the problem that is done due to rush. forget the formula, because students do not take lessons and often sleep during the learning process. consider the problem difficult so that it doesn't solve it correctly. students forget and do not understand the concept used to paint outer circles and inner circles of triangles and consider this material difficult and too much.

Acknowledgements

Acknowledgments are conveyed to the Rector, Director of Directorate of Research, Community Involvement and Innovation, and the Dean of Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran.

References

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bangkok, Thailand, March 5-7, 2019

Stamatis Voulgaris., Anastasia Evangelidou., *Understanding of three dimensional arrays of cubes - Children in transition.*

Trelani F.Milburna.,Christopher J.Lonigan.,bLydia De Florioc.,and Alice Kleind.,Dimensionality of preschoolers’ informal mathematical abilities,Early Childhood Research Quarterly, 2018.

Williams B., and Davis S., Maths anxiety and medication dosage calculation errors,Nurse Education Pract,pp. 139-46. 2016.

Biographies
Rahmi Wiganda Elastika born in pekanbaru, October 30, 1993. I am the third child of three brothers. I was born by two parents who are very hard working, I am very proud to have them and currently I am studying Master's Program in Mathematics at Padjadjaran University Bandung.

Zulkarnain is a lecturer in the Department of Mathematics, Faculty of teacher training and science, Universitas Riau, Indonesia. Currently working in Riau University and Islamic University of Riau.

Mefa Indriati is a lecturer in the Department of Mathematics, Faculty of teacher training and science, Islamic University of Riau, Indonesia besides that he also served as my academic mentor during his studies at bachelor program of Mathematics, Faculty of teacher training and science.

Sukono is a lecturer in the Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran. Currently serves as Head of Master's Program in Mathematics, the field of applied mathematics, with a field of concentration of financial mathematics and actuarial sciences

Subiyanto is a lecturer in the Department of Marine Science, Faculty of Fishery and Marine Science, Universitas Padjadjaran. He received his Ph.D in School of Ocean Engineering from Universiti Malaysia Terengganu (UMT), Malaysia in 2017. His research focuses on applied mathematics, numerical analysis and computational science.

Abdul Talib Bon is a professor of Production and Operations Management in the Faculty of Technology Management and Business at the Universiti Tun Hussein Onn Malaysia since 1999. He has a PhD in Computer Science, which he obtained from the Universite de La Rochelle, France in the year 2008. His doctoral thesis was on topic Process Quality Improvement on Beltline Moulding Manufacturing. He studied Business Administration in the Universiti Kebangsaan Malaysia for which he was awarded the MBA in the year 1998. He's bachelor degree and diploma in Mechanical Engineering which his obtained from the Universiti Teknologi Malaysia. He received his postgraduate certificate in Mechatronics and Robotics from Carlisle, United Kingdom in 1997. He had published more 150 International Proceedings and International Journals and 8 books. He is a member of MSORSIM, IIF, IEOM, IIE, INFORMS, TAM and MIM.