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Abstract 
Control charts graphically verify variation in quality parameters. Attribute type control charts deal with quality 
parameters that can only hold two states e.g. good or bad, yes or no, etc. Various control charts are developed based 
on the underlying distribution of the quality parameters, e.g., u and c-charts for Poisson distribution, p and np-charts 
for binomial distribution, and also some non-parametric charts when the underlying distribution is uncertain. In 
construction of p-control chart using binomial distribution, the value of proportion non-conforming must be known 
or estimated from limited sample information. This may cause the control limits to shrink and often result in false 
detection when the process is actually in control. In this study, a statistical control chart is proposed based on 
hyperbinomial distribution when prior estimate of proportion non-conforming is unavailable and is estimated from 
limited sample information. 

Keywords 
Control chart, Cumulative distribution function, Probability mass function, Binomial distribution, and 
Hyperbinomial distribution 

1. Introduction 
In the 21st century, the global industry has witnessed some major changes in trend. Quality has become a major 
norm for success not only in industrial sector but also in service sector. The "Quality Revolution" started in Japan 
after the World War II. Now all the developed countries have given prime importance to the issue of quality. People 
have started to realize the importance of quality and consequences of bad quality. In the earlier stage, quality was 
totally inspection based. Inspection aimed at finding and sorting the defective items. The actions were mostly 
reactive after the fault has occurred and any sort of corrective actions were impossible. After some time people 
realized that inspection based systems are often time consuming and expensive to conduct. Then the idea of 
sampling came forward where random samples were taken for further statistical analysis to evaluate the capability of 
the process. This is known as Statistical Process Control and Statistical Quality Control (SPC/SQC). Various tools 
were developed in the process to analyze the performance of the process based on sample information. Control chart 
is the most popular and widely used among the tools used in Statistical Quality control (Hasin 2007). Control charts 
are easy to interpret by observing the data graphically. Process status (in control/out of control) can be easily 
understood and interpreted by simply observing the control chart. Walter Shewhart of Bell Laboratory introduced 
the idea of control chart to identify variation and trend in quality parameters (Montgomery 2007). There are several 
sources of variation such as machine, man, environment, etc. The upmost target of control chart is to monitor this 
variation and eventually control it. However, the rapid improvement of science and technology has led to 
enhancement of processes to such extent that traditional control charts are showing problems in performance or 
practical implementation. Control charts can be classified into two broad categories: variable control charts and 
attribute control charts (Montgomery 2007). There are some quality characteristics which are evaluated non-
numerically based on judgment or visualization in order to conclude on any of the two possibilities - conforming or 
non-conforming, yes or no, good or bad, pass or fail, and so on. These are called attribute type quality 
characteristics. Although an attribute control chart is used in non-numeric aspect but often variables are used. The 
result however is always a go-no-go decision. Although data for attribute type quality characteristics can be obtained 
faster than data for variable type quality characteristics, they usually contain less information.  
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Based on the underlying distribution that the data follow, various control charts are developed. It is assumed in the 
context of process control that chance causes follow a stable probability distribution. The control limits of traditional 
Shewhart type control charts are derived on the assumption that the distribution of the pattern is normal. The 
statistical properties of the control charts are only true when this assumption is satisfied. However, if the data is 
contaminated and the underlying process is non-normal, then the performance of the traditional control charts are 
highly affected (Das 2008)). Distribution-free or non-parametric control charts are used on that aspect. It can be 
noted that some non-parametric procedures outperforms their parametric ones remarkably even if the underlying 
distribution is in-fact normal. However, if there is sufficient information available about the underlying distribution 
of the quality parameter, then non-parametric methods are less efficient than their parametric counterparts. 
Sometimes data obtained from samples are over or under-dispersed. The amount of dispersion affects the magnitude 
of upper and lower control limits significantly. As a result, if the data are under-dispersed, c or u-charts may falsely 
identify sample points as in-control, thereby extending the time until the process is recognized as out-of-control and 
if a data set is over-dispersed, c and u-charts may prematurely denote samples as out-of-control when, in reality, 
added variation naturally exists in the data (Sellers 2012).When the underlying distribution of the quality parameter 
follows Poisson distribution then c-charts and u-charts are appropriate tool for analyzing process performance 
(Feller 2008). For log-normal data, logarithmic transformation is used to convert it to normal for which good control 
schemes are available and are also easier to implement (Cheng and Xie 2000). p-charts and np-charts are used when 
the underlying distribution of the quality parameter follows binomial distribution. Nevertheless, in case of binomial 
distribution a prior estimate of p (fraction non-conforming in the population) must be available. When this p is 
estimated from limited number of samples, the result becomes questionable and unreliable. 

In recent years a substantial number of non-parametric control charts have been developed which do not assume the 
underlying distribution of the quality parameter. Chakraborti et al. (2001) gave an overview and discussed the 
advantages of several non-parametric control charts over their normal theory counterparts (Chakraborti et al. 2001). 
Bakir (2001) compiled and classified several non-parametric control charts according to the driving non-parametric 
idea behind each one of those (Bakir 2001). In addition to these works, Park et al. (1987) developed non-parametric 
Shewhart type procedures for monitoring the location parameter of a continuous process when the in-control value 
for the parameter is not specified based on the “linear placemen” statistics, introduced by Orban and Wolfe (1982) 
for comparing current samples with a standard sample taken when the process is operating properly. Two non-
parametric control charts (Mood's Test and Tukey's Test) for controlling variability was proposed by Das (2008). 
Das (2008) showed that Mood's method performed better than Tukey's method for normal, uniform, and Laplace 
distributions. He also mentioned that the performance of each method improves with the increase in sample size. 
Cheng and Xie (2000) showed that direct data transformation method may be inappropriate for the control of a 
lognormal process if no constraints are applied to the lognormal process. They proposed a new method that can 
control a lognormal process when specific interval for the lognormal mean is given (Cheng and Xie 2000). When the 
data display under-dispersion, limit bounds determined by Poisson or binomial assumptions would result in false 
negatives, as most data points would fall within the bounds. Shmueli et al. (2005) revived a flexible probability 
distribution called the Conway–Maxwell–Poisson (COM-Poisson) distribution that can broadly model attribute data 
that is either over- or under-dispersed. The COM-Poisson control chart proposed by Kimberly (2012) is based on 
COM-Poisson distribution that is flexible and able to generalize Poisson, geometric, and Bernoulli distributions and 
is useful when the underlying distribution of the attribute data is unknown (Sellers 2012). Negative binomial 
distribution or geometric distribution can be used as an alternative to Poisson distribution as shown by Jackson 
(1972). Kaminsky et al. (1992) proposed a specific control chart for negative binomial distribution when it arises as 
the sum of independent shifted random variables. They also showed that using this model instead of Poisson model 
when appropriate reduces the rate of false alarm significantly (Kaminsky et al. 1992). During the development of p-
control chart, to the best of authors’ knowledge, Shewhart did not consider that proportion of non-conforming items 
can take a very small value due to the rapid improvement of technology and sophisticated high precision 
machineries. These charts have been prepared by using normal approximation to binomial distribution to sample 
statistic. However for small p-values, binomial distribution is highly asymmetric. Thus when such a process is 
monitored, it results in high rate of false alarms. Joekes and Barbosa (2013) proposed a new modified p-chart based 
on the Cornish–Fisher expansion, (Fisher and Cornish 1960), which allows monitoring processes with very low 
values of p. Construction of p-charts using binomial assumption is unreliable in most cases where p is estimated 
from sample data. Binomial distribution assumes more precision than actually exists; it makes control limits more 
precise than it really is. Thus, the control limits become narrower and may result in false detection when the process 
may still in control (Haldar and Mahadevan 2000). 

160



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

In this paper, we proposed a new approach to developing p-charts that does not make control limits more precise 
than it really is. The rest of the paper is arranged in the following order. Section II describes the proposed 
methodology. In section III, we illustrate the proposed methodology using a numerical example. Section IV 
concludes the paper with ending remarks and future work opportunities. 

2. Methodology 
Control charts are used to monitor variation or stability in a process. Various sort of attribute control charts are there. 
Various charts have their own area of specialization depending on the underlying distribution of quality parameters. 
p-chart is the most commonly used attribute control chart. Here, the term p denotes percentage non-conforming or 
percentage of defective items. p-charts are used when the quality parameter has only two outcomes possible, 
probability of occurrence and non-occurrence is constant, and successive events are independent. However, if the 
production takes place in batches or in lots, then the assumption of constant probability of occurrence does not 
apply.  
It is a common assumption in construction of any sort of control chart that the process is operating in stable manner. 
Let, a random sample of size n (units) is selected, where x is the number of non-conforming units. Let, p is the 
fraction non-conforming, then )1( p− is fraction conforming. Then as per the rule of binomial distribution following 
equation applies: 

( ) (1 )x n xn
P X x p p

x
− 

= = − 
 

 
(1) 

 
Random variable X which follows binomial distribution has mean and variance of np and (1 )np p− , respectively. In 
Statistical quality control, a random sample of size n is taken repeatedly at certain interval and the means are 
calculated. The distribution of these sample means is called sampling distribution of sample means. Thus, the 

sample mean becomes x
n

.The mean and variance of this variable x
n

is p and (1 )p p
n
− , respectively. 

The standard equation that is used to construct the control limits of the control charts are: 
)()E(UCL xVarkx +=  

(2) 

                                                                 )E(CL x=  (3) 

)()E(LCL xVarkx −=  
(4) 

Here, k denotes the number of standard deviation, UCL and LCL are the upper and lower control limits, 
respectively. Most commonly used value is 3 as it encapsulates 99.7% of the data in a normal distribution; other 
values are also possible. This limit is often termed as 3-σ control and used in most control charts. Thus, for a p-chart 
with 3-σ control, the control limits stand as follows: 
 

Binomial
(1 )UCL 3 p pp
n

× −
= +  (5) 

                                                             p=BinomialCL  (6) 

n
ppp )1(3LCLBinomial

−×
−=

 
(7) 

 
However, in construction of the control chart using Binomial distribution a prior estimate of p must be available. 
Otherwise the value of p has to be estimated from limited sample data. Thus, the estimation becomes unreliable and 
uncertainty in the value of p makes the limits of the control chart questionable. Thus, p can attain any values 
between 0 to 1 and its probability characteristics can be describe by standard Beta distribution as shown by Halder 
(1982). The two positive shape parameters of the distribution are q and r. These parameters can be estimated from 
inspection outcomes m and N. If a total of N items are inspected and m of them is found to be good, then they have 
the following relationship with the parameters: 

q = m + 1 (8) 
r = N - m + 1 (9) 

The corresponding probability density function (PDF) of standard Beta distribution can be expressed as: 
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Since binomial distribution assumes more precision than actually exists, it makes control limits more precise than it 
really is. This problem can be solved using hyperbinomial distribution which considers the distribution of p. If N 
items are inspected and m of them are found to be good, then the probability of obtaining x good items out of n items 
is given by hyperbinomial distribution. The corresponding probability mass function (PMF) is as follows: 
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The mean and variance of the hyperbinomial distribution is not found in any published literature. However, the 

mean and variance can be calculated mathematically to be ( )
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, respectively (see Appendix). As discussed before, the mean and 
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Assuming normal approximation, these values of mean and variance are used to construct the control limits of 3-σ 
hyperbinomial control chart as mentioned in (2), (3), and (4). 
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Control charts measure if a process is in statistical control, (i.e., follows normal distribution).  Since 3-σ 
encapsulates 99.7% of the data in a normal distribution, if the process falls within that limit, the process is 
considered to be in statistical control. However, this encapsulation of data can also be done using CDF of the 
underlying distribution. While using CDF we are interested in fraction conforming instead of fraction non-
conforming. The CDF of hyperbinomial distribution can be obtained from its PMF. Suppose, x good items are 
desired with a 99.7% confidence level; this can be obtained using, 
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997.0)(1)( =<−=≥ xXPxXP  (17) 
The number of x good items that correspond to 99.7% confidence level can then be used to determine whether the 
process is in statistical control. 
 
3. Numerical Example 

The following example has been taken from Hasin (2007). 
San Marino Tube Lights Limited is a famous tube light manufacturing company in North Carolina, producing 
around 5000 pieces of lights per day. The quality control expert planned to take samples of size 50 units each at 
every working day. The company worked 22 days in the month under consideration. To test for quality, experts 
planned to use p-chart. A quality inspector randomly collected and tested 50 tube lights from production line. If they 
lighted on, they are passed as conforming units, and if they fail, they are rejected as defective units. Data for the 22 
working days are shown in Table 1. 

Table 1 

Sample No. 
(i) 

No. of 
failures 

(xi) 

No. of 
good bulbs 

(50-xi) 

Fraction 
non-

conforming 
(pi) 

Sample 
No. 
(i) 

No. of 
failures 

(xi) 

No. of 
good 
bulbs 
(50-xi) 

Fraction 
non-

conforming 
(pi) 

1 3 47 0.06 12 1 49 0.02 
2 2 48 0.04 13 3 47 0.06 
3 3 47 0.06 14 2 48 0.04 
4 2 48 0.04 15 4 46 0.08 
5 3 47 0.06 16 3 47 0.06 
6 2 48 0.04 17 3 47 0.06 
7 5 45 0.10 18 8 42 0.16 
8 3 47 0.06 19 4 46 0.08 
9 7 43 0.14 20 2 48 0.04 
10 2 48 0.04 21 1 49 0.02 
11 1 49 0.02 22 0 50 0.00 

Total no. of bulbs = 1100 Total failures = 64 Total no. of good bulbs  = 1036 

At first let us construct a control chart based on binomial mean and variance.  

Here, Sample size, n = 50. Mean fraction non-conforming, 64E 0.0582
22 50

x p
n

  = = =  × 
 and variance, 

( )1
Var 0.001096.

p px
n n

−  = = 
 

 

Thus the 3-σ control limits of binomial distribution are as follows: 

Binomial
(1 ) 0.0582 0.9418UCL 3  0.0582 3 0.1575

50
p pp

n
× − ×

= + = + =  

BinomialCL  0.0582 p= =  

Binomial

(1 ) 0.0582 0.9418LCL 3  0.0582 3 0.00
50

p pp
n

× − ×
= − = − ≅  

Data is plotted in the control limits calculated above and we obtain the control chart using Minitab shown in Figure 
1. 

From the control chart, we observe that the proportion of defective items may not be stable. One subgroup (4.5% of 
the total subgroups) is out of control. So, the process is estimated to be out of control if there is no assignable cause 
associated with that particular sample (Sample No. 18). 
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Now we construct a control chart considering that the data follows hyperbinomial distribution. The parameters of 
hyperbinomial distribution for this numerical problem are as follows. 
Total number of inspected items, N = 22×50 = 1100 
Total number of defective bulbs from the inspected bulbs, m = 64, lot size, n = 50 

 

Figure 1. p-chart using binomial distribution 

Therefore, Mean, 
( )
( )

1
E 0.0590

2
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n N
+  = =  + 
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Thus, the 3-σ control limits for hyperbinomial distribution are calculated as: 
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n n
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Data is plotted in the control limits calculated and we obtain the control chart shown in Fig. 2 using Minitab. 

 

Figure 2. p-chart using hyperbinomial distribution 

By observing the control chart we notice that the proportion of defective items is stable. No subgroups are out of 
control. So we can conclude that the process is in statistical control.        
CDF of hyperbinomial distribution can also be used to validate the results. We are interested to determine the least 
amount of good items (x) that corresponds to 99.7% confidence. As we know, as the confidence level increases, the 
least amount of good items (x) in the sample decreases.  The results are tabulated in Table 2: 
For the problem under consideration,  
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Sample size of each inspection, n = 50 
Total number of inspected bulbs, N = 22×50=1100 
Total number of non-defective bulbs from the inspected bulbs, M = (1100–64) = 1036 

Table 2 

Number of 
good bulbs, x 

P(X < x; n = 50, N = 1100, 
M = 1036 ) 

Number of 
good bulbs, x 

P(X < x; n = 50, N = 1100, 
M = 1036 ) 

0 5.21E-56 26 1.78E-15 
1 2.38E-53 27 1.92E-14 
2 5.36E-51 28 1.94E-13 
3 7.98E-49 29 1.84E-12 
4 8.80E-47 30 1.63E-11 
5 7.68E-45 31 1.35E-10 
6 5.52E-43 32 1.04E-09 
7 3.36E-41 33 7.46E-09 
8 1.77E-39 34 4.99E-08 
9 8.15E-38 35 3.10E-07 
10 3.34E-36 36 1.78E-06 
11 1.23E-34 37 9.42E-06 
12 4.07E-33 38 4.59E-05 
13 1.23E-31 39 2.05E-04 
14 3.38E-30 40 8.31E-04 
15 8.55E-29 41 3.05E-03 
16 2.00E-27 42 1.01E-02 
17 4.30E-26 43 2.97E-02 
18 8.61E-25 44 7.72E-02 
19 1.60E-23 45 1.75E-01 
20 2.77E-22 46 3.41E-01 
21 4.46E-21 47 5.67E-01 
22 6.73E-20 48 7.96E-01 
23 9.47E-19 49 9.49E-01 
24 1.25E-17 50 1.00E+00 
25 1.54E-16 

 
From Table 2, it is observed that at least 42 items are expected to be good with a confidence level of 99.7% 
considering hyperbinomial distribution. Since all of the samples had at least 42 conforming bulbs, the process is in 
statistical control. Thus, the result obtained using CDF of hyperbinomial distribution validates the result obtained 
using hyperbinomial 3-σ control chart. 
 
4. Conclusion 
Binomial distribution is very commonly considered as the underlying distribution of attribute type quality 
parameters in various product industries. However, when prior estimate of proportion non-conforming is not 
available, it has to be estimated from limited sample information. Such estimation causes binomial distribution to 
assume more precision than there actually exists. As a result, it causes the control limits to shrink, which may result 
in false positive or detection of non-conformity when the process is actually in control, as evident from our example 
problem. Binomial control charts also fail to utilize additional sample information. Thus, this study proposes the use 
of hyperbinomial distribution for the construction of 3-σ control chart when limited sample information is available. 
Hyperbinomial distribution considers the variability in proportion non-conforming. This reduces the rate of false 
detection significantly as shown in the numerical problem. The study also validates the use of hyperbinomial 3-σ 
control chart by comparing with the result obtained using CDF of hyperbinomial distribution. This efficient 
approach can be used for quality inspection in various manufacturing industries. In future, normal approximation to 
hyperbinomial distribution will be evaluated as a part of this study since it serves as the basis of construction of 
Shewhart control charts and will be applied to other numerical problems. 
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Appendix 
Derivation of Mean and Variance for Hyperbinomial Distribution:  
We know, the PMF of hyperbinomial distribution is 
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Mean of hyperbinomial distribution can be found as follows: 
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Since the expression inside the summation symbol is analogous to the PMF of hyperbinomial distribution, the 
summation over the full range of x must be equal to 1. So we can write: 
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Variance of hyperbinomial distribution can be found as follows: 
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Since the term  
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