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Since binomial distribution assumes more precision than actually exists, it makes control limits more precise than it 
really is. This problem can be solved using hyperbinomial distribution which considers the distribution of p. If N 
items are inspected and m of them are found to be good, then the probability of obtaining x good items out of n items 
is given by hyperbinomial distribution. The corresponding probability mass function (PMF) is as follows: 
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The mean and variance of the hyperbinomial distribution is not found in any published literature. However, the 

mean and variance can be calculated mathematically to be ( )
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Assuming normal approximation, these values of mean and variance are used to construct the control limits of 3-σ 
hyperbinomial control chart as mentioned in (2), (3), and (4). 
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Control charts measure if a process is in statistical control, (i.e., follows normal distribution).  Since 3-σ 
encapsulates 99.7% of the data in a normal distribution, if the process falls within that limit, the process is 
considered to be in statistical control. However, this encapsulation of data can also be done using CDF of the 
underlying distribution. While using CDF we are interested in fraction conforming instead of fraction non-
conforming. The CDF of hyperbinomial distribution can be obtained from its PMF. Suppose, x good items are 
desired with a 99.7% confidence level; this can be obtained using, 
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997.0)(1)( =<−=≥ xXPxXP  (17) 
The number of x good items that correspond to 99.7% confidence level can then be used to determine whether the 
process is in statistical control. 
 
3. Numerical Example 

The following example has been taken from Hasin (2007). 
San Marino Tube Lights Limited is a famous tube light manufacturing company in North Carolina, producing 
around 5000 pieces of lights per day. The quality control expert planned to take samples of size 50 units each at 
every working day. The company worked 22 days in the month under consideration. To test for quality, experts 
planned to use p-chart. A quality inspector randomly collected and tested 50 tube lights from production line. If they 
lighted on, they are passed as conforming units, and if they fail, they are rejected as defective units. Data for the 22 
working days are shown in Table 1. 

Table 1 

Sample No. 
(i) 

No. of 
failures 

(xi) 

No. of 
good bulbs 

(50-xi) 

Fraction 
non-

conforming 
(pi) 

Sample 
No. 
(i) 

No. of 
failures 

(xi) 

No. of 
good 
bulbs 
(50-xi) 

Fraction 
non-

conforming 
(pi) 

1 3 47 0.06 12 1 49 0.02 
2 2 48 0.04 13 3 47 0.06 
3 3 47 0.06 14 2 48 0.04 
4 2 48 0.04 15 4 46 0.08 
5 3 47 0.06 16 3 47 0.06 
6 2 48 0.04 17 3 47 0.06 
7 5 45 0.10 18 8 42 0.16 
8 3 47 0.06 19 4 46 0.08 
9 7 43 0.14 20 2 48 0.04 
10 2 48 0.04 21 1 49 0.02 
11 1 49 0.02 22 0 50 0.00 

Total no. of bulbs = 1100 Total failures = 64 Total no. of good bulbs  = 1036 

At first let us construct a control chart based on binomial mean and variance.  

Here, Sample size, n = 50. Mean fraction non-conforming, 64E 0.0582
22 50

x p
n

  = = =  × 
 and variance, 

( )1
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Thus the 3-σ control limits of binomial distribution are as follows: 
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Data is plotted in the control limits calculated above and we obtain the control chart using Minitab shown in Figure 
1. 

From the control chart, we observe that the proportion of defective items may not be stable. One subgroup (4.5% of 
the total subgroups) is out of control. So, the process is estimated to be out of control if there is no assignable cause 
associated with that particular sample (Sample No. 18). 
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Now we construct a control chart considering that the data follows hyperbinomial distribution. The parameters of 
hyperbinomial distribution for this numerical problem are as follows. 
Total number of inspected items, N = 22×50 = 1100 
Total number of defective bulbs from the inspected bulbs, m = 64, lot size, n = 50 

 

Figure 1. p-chart using binomial distribution 
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Thus, the 3-σ control limits for hyperbinomial distribution are calculated as: 
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Data is plotted in the control limits calculated and we obtain the control chart shown in Fig. 2 using Minitab. 

 

Figure 2. p-chart using hyperbinomial distribution 

By observing the control chart we notice that the proportion of defective items is stable. No subgroups are out of 
control. So we can conclude that the process is in statistical control.        
CDF of hyperbinomial distribution can also be used to validate the results. We are interested to determine the least 
amount of good items (x) that corresponds to 99.7% confidence. As we know, as the confidence level increases, the 
least amount of good items (x) in the sample decreases.  The results are tabulated in Table 2: 
For the problem under consideration,  

164



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

Sample size of each inspection, n = 50 
Total number of inspected bulbs, N = 22×50=1100 
Total number of non-defective bulbs from the inspected bulbs, M = (1100–64) = 1036 

Table 2 

Number of 
good bulbs, x 

P(X < x; n = 50, N = 1100, 
M = 1036 ) 

Number of 
good bulbs, x 

P(X < x; n = 50, N = 1100, 
M = 1036 ) 

0 5.21E-56 26 1.78E-15 
1 2.38E-53 27 1.92E-14 
2 5.36E-51 28 1.94E-13 
3 7.98E-49 29 1.84E-12 
4 8.80E-47 30 1.63E-11 
5 7.68E-45 31 1.35E-10 
6 5.52E-43 32 1.04E-09 
7 3.36E-41 33 7.46E-09 
8 1.77E-39 34 4.99E-08 
9 8.15E-38 35 3.10E-07 
10 3.34E-36 36 1.78E-06 
11 1.23E-34 37 9.42E-06 
12 4.07E-33 38 4.59E-05 
13 1.23E-31 39 2.05E-04 
14 3.38E-30 40 8.31E-04 
15 8.55E-29 41 3.05E-03 
16 2.00E-27 42 1.01E-02 
17 4.30E-26 43 2.97E-02 
18 8.61E-25 44 7.72E-02 
19 1.60E-23 45 1.75E-01 
20 2.77E-22 46 3.41E-01 
21 4.46E-21 47 5.67E-01 
22 6.73E-20 48 7.96E-01 
23 9.47E-19 49 9.49E-01 
24 1.25E-17 50 1.00E+00 
25 1.54E-16 

 
From Table 2, it is observed that at least 42 items are expected to be good with a confidence level of 99.7% 
considering hyperbinomial distribution. Since all of the samples had at least 42 conforming bulbs, the process is in 
statistical control. Thus, the result obtained using CDF of hyperbinomial distribution validates the result obtained 
using hyperbinomial 3-σ control chart. 
 
4. Conclusion 
Binomial distribution is very commonly considered as the underlying distribution of attribute type quality 
parameters in various product industries. However, when prior estimate of proportion non-conforming is not 
available, it has to be estimated from limited sample information. Such estimation causes binomial distribution to 
assume more precision than there actually exists. As a result, it causes the control limits to shrink, which may result 
in false positive or detection of non-conformity when the process is actually in control, as evident from our example 
problem. Binomial control charts also fail to utilize additional sample information. Thus, this study proposes the use 
of hyperbinomial distribution for the construction of 3-σ control chart when limited sample information is available. 
Hyperbinomial distribution considers the variability in proportion non-conforming. This reduces the rate of false 
detection significantly as shown in the numerical problem. The study also validates the use of hyperbinomial 3-σ 
control chart by comparing with the result obtained using CDF of hyperbinomial distribution. This efficient 
approach can be used for quality inspection in various manufacturing industries. In future, normal approximation to 
hyperbinomial distribution will be evaluated as a part of this study since it serves as the basis of construction of 
Shewhart control charts and will be applied to other numerical problems. 
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Appendix 
Derivation of Mean and Variance for Hyperbinomial Distribution:  
We know, the PMF of hyperbinomial distribution is 
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Mean of hyperbinomial distribution can be found as follows: 
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Variance of hyperbinomial distribution can be found as follows: 
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Since the term  
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is analogous to the PMF of hyperbinomial distribution, summation of this term over full range of x must be equal to 
1. Hence, 
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