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Abstract 
In a competitive environment, it is crucial for organizations to know how efficiently and effectively they are 
operating compared to similar organizations. The challenge is to somehow draw helpful insights from all these 
numbers that will lead to improvements in the performance of the organization. Efficiency measurement is one 
aspect of organizational performance. Data Envelopment Analysis (DEA) technique is considered the most 
appropriate tool for evaluating the performance of a set of comparable homogenous organizations under some 
predefined conditions. In real-life problems, values for input and/or output variables include uncertainty, this 
uncertainty may be randomness or vagueness in nature. The purpose of this study is the using of some theoretical 
results to develop a unified DEA model to handle different uncertainty types, the developed model allows various 
natures of variables (vagueness, randomness and deterministic) depending on the nature of uncertainty in the 
variables. Implementation of the model was presented through some cases to illustrate the model functionality. In 
addition, the results are compared with three other different DEA models; a Combined fuzzy/deterministic model, 
a Combined stochastic/deterministic model, and a deterministic model. Managers can rely on the developed model 
to assess relative efficiency in business complex systems associated with different uncertainty natures. 
Keywords: 
Data Envelopment Analysis, Uncertainty Variation, Performance Evaluation, Model Validation, Efficiency 
Assessment. 

1. Introduction
One of the most important principles in any business is the principle of efficiency; where the best possible 
economic effects (outputs) are attained with as little economic sacrifices as possible (inputs). In order to assess 
the relative efficiency of a business unit, it is necessary to consider the conditions and operation results of other 
units of the same kind and to determine the real standing of the results of such a comparison. DEA is a powerful 
quantitative tool that provides a means to obtain useful information about relative efficiency and performance of 
firms, organizations, and all sorts of functionally similar, relatively autonomous operating units, known as 
decision making units (DMUs). The DEA objective is to assess the relative efficiency of each DMU in relation to 
its peers. The DEA result is a classification of all DMUs as either “efficient” or “inefficient”. Not only classifying 
the DMUs, but also determining the level of inefficiency and the corresponding amount to enhance the 
performance (El-Demerdash et al., 2013).  

Usually the investigated DMUs are characterized by a vector of multiple inputs and multiple outputs. A main 
advantage of DEA is that it does not require any prior assumptions on the underlying functional relationships 
between the input and output variables (Cooper et al., 2006). However, one of the most weaknesses in traditional 
DEA models is that it does not allow uncertainty variations in input and output data, although many important 
reality observations either stochastic or fuzzy in nature. As a result, DEA efficiency measurement may be sensitive 
to such variations Cooper et al. (2011). A DMU which is rated as efficient relative to other DMUs may turn 
inefficient if such uncertainty variations are considered, or vice versa. In another word, if the collected data for a 
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variable are not represented in the correct form nature, then the resulting efficiencies will be erroneous and 
misleading because of a high sensitivity of the efficiency scores to the realized levels of inputs or outputs.  
The rest of the paper is organized as follows. The coming section includes the literature survey. This is followed 
by proposed a unified DEA model that handles deterministic variables and variables with different uncertainty 
variations. Then a hypothetical illustrative example. Then applications of DEA. The paper will end with the 
conclusions. 

2. Literature Review 
There are good efforts that have been made recently in DEA model to handle the randomness or vagueness in 
data. For handling stochastic data, the  proposed models extended output-oriented DEA model such that the case 
of all outputs have a random nature using chance constrained programming while all inputs are deterministic 
(Land et al., 1993; Desai et al., 2005; Wu et al., 2012) or by taking into consideration the possibility of all variables 
in random variation (Olesen and Petersen, 1995; Cooper et al., 2004; Razavyan and Tohidi, 2008; Khodabakhshi, 
2010; Azadeh et al., 2015; Liu et al., 2017). There are very few researches considered input-oriented DEA model 
by assuming inputs are deterministic and outputs are random in nature (Talluri et al., 2006) or assume that all 
input variables are random in nature and all outputs are deterministic (El-Khodary et al., 2010; El-Demerdash et 
al., 2013; El-Demerdash et al., 2014). it is evident that the developed stochastic DEA models adopted either 
original or output-oriented DEA model, but still very few considered input-oriented DEA model. It is noticed that, 
available stochastic DEA models consider either all output variables or all input variables or all variables as 
random in nature, although some might have a deterministic in nature. In addition to, they were considered there 
is not mutually correlated relation between same inputs or same outputs. 

In the recent years, there are good efforts that have been made in the DEA models to handle the vagueness in 
variables either fuzzy input or fuzzy output. A fuzzy DEA model was developed either for traditional model (Saati 
et al., 2002; Liu et al., 2007; Chiang and Che, 2010; Khoshfetrat and Daneshvar, 2011) or extended output-oriented 
DEA model such that consider all data as fuzzy in nature (Girod, 1996; Kao and Liu, 2000; Entani et al., 2002; 
Zerafat et al., 2010; Azadeh et al.,  2011; Zerafat et al., 2012; Egilmez et al., 2016; and Hatami-Marbini et al., 
2017). From surveying the literature, we reached two main conclusions. The first is that the available fuzzy DEA 
models consider all output and/or input variables as fuzzy in nature, although some might have a deterministic in 
nature. The second is that the DEA models adopted are either the traditional DEA model or the output-oriented 
DEA model, but none (to our knowledge) considered input-oriented DEA models. Accordingly, in this study, we 
attempted to develop a Fuzzy input-oriented DEA that considers a mix of fuzzy and deterministic input and/or 
output variables. 

There is one trial to develop a flexible DEA model deals with different types of variables by A. Azadeh and S.M. 
Alem (2010) identified the need to combine the deterministic DEA, stochastic DEA, and fuzzy DEA models to 
establish the FCCDEA model; that can be more useful in real life problems. They presented a flexible DEA – 
fuzzy DEA (FDEA) – chance constrained DEA (CCDEA) approach. This approach used DEA model when all 
data are crisp and used FDEA or CCDEA when inputs variables are not crisp and outputs variables are crisp. After 
collected data, it is checked for the status of data either crisp or non-crisp. FDEA is used for non-crisp data. 
However, for crisp data the probability level (β) is checked, if it is not equal to 1 then CCDEA is used. Otherwise, 
used DEA. Based on the proposed approach they deal with three conditions: data is non-crisp, then, use FDEA 
method, data is crisp, and β ≠ 1, then use CCDEA method, and data is crisp, and β = 1, then use DEA method. In 
their work, they tried to combine models, however, they didn’t allow the same model to have different types of 
uncertainty. 

This paper forms one part of a series of continuing research efforts. In previous work we treated the topic of 
stochastic characterizations of efficiency and inefficiency in DEA using chance constrained method to deal with 
stochastic variation in constraints to convert them to equivalent deterministic nonlinear model. However, we used 
α-cut approach to deal with fuzzy variation in constraints to convert them to equivalent crisp model. El-Khodary, 
et al. (2010) developed an algorithm to help any comparable organizations for evaluating their performance, the 
developed algorithm based on the DEA model and working in a stochastic environment under assumptions that 
all input variables are random and the relation between each DMU for the stochastic input variables are 
independent. El-Demerdash, et al., (2013) developed an algorithm for a stochastic chance constrained input-
oriented model, where the stochastic inputs are normally distributed, while the remaining inputs and all outputs 
are deterministic and the relation between the same stochastic input variable through different DMUs is dependent. 
El-Demerdash et al., (2016) developed a stochastic DEA model that allows some input and/output variables to be 
stochastic while keeping other variables deterministic. In this model we allowed some dependency between values 
of the same stochastic variable across different DMUs. Tharwat et al., (2019) developed a fuzzy DEA model that 
considers a mix of both fuzzy and deterministic output and/or input variables to be solved using the α-cut 
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approach. The developed model algorithm is divided into three stages; it starts by defining the membership 
function for the fuzzy variables (assumed triangular), then finding the α-cuts for the fuzzy variables, and finally 
calculating the relative efficiency for each DMU. 

The paper in hand is an extension to the previous work, where we need to develop a unified DEA model that 
consider some of input and output variables have uncertainty nature either stochastic and/or fuzzy and the 
remaining input and output variables are deterministic.  

3. The Developed DEA Unified Model with Uncertainty  
In real world problems, exact data may not always be available due to the existence of uncertainty and we needed 
to evaluate the performance of any comparable institutions to assure the quality given that some of the input and 
/or output variables might have as uncertainty in nature. So, it was necessary to develop a model to deal with this 
case. Therefore, in this section, we aim to develop a unified input-oriented DEA model to handle different 
uncertainty types of variables. We decided to combine previous work in El-Demerdash et al., (2016) and Tharwat 
et al., (2019). The proposed model allows some input and/output variables to be uncertainty (stochastic/fuzzy) in 
nature while keeping other variables deterministic. In this section we had concern about input-oriented DEA 
model which defines the frontier by seeking the maximum possible proportional reduction in input usage, with 
output levels held constant, for each DMU. the input oriented VRS DEA model for measuring the efficiency level 
of DMUp is as follow: 

𝑀𝑀𝑀𝑀𝑀𝑀    𝑍𝑍𝑝𝑝 = 𝜃𝜃 
𝑠𝑠. 𝑡𝑡.   

�𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝜃𝜃𝑝𝑝    ,∀𝑗𝑗 = 1 …𝑚𝑚 

�𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 ≥ 𝑦𝑦𝑝𝑝

𝑛𝑛

𝑖𝑖=1

         ,∀𝑘𝑘 = 1 … s                                                                             (𝑀𝑀 − 1) 

�𝜆𝜆𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 

𝜆𝜆𝑖𝑖  ≥ 0, (𝑖𝑖 = 1,2, … ,𝑛𝑛)             

where k = 1 to ‘s’ (no. of outputs); j = 1 to ‘m’ (no. of inputs); i = 1 to ‘n’ (no. of DMUs); 𝑦𝑦𝑖𝑖𝑖𝑖  = amount of output 
k produced by DMU i; xij = amount of input j utilized by DMU i;  𝜆𝜆𝑖𝑖 = weight given to DMU i.        

3.1 Theoretical results  
  
Proposition 1: Assume that some of the input and/or output observations are random variables, the equivalent 
chance-constraint unified input-oriented DEA model for measuring the efficiency level of pth DMU for the model 
(M - 1) is presented as below: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍𝑝𝑝 = 𝜃𝜃 
𝑠𝑠. 𝑡𝑡.                                                                           

        𝑝𝑝𝑝𝑝 ��𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝�  ≥  (1 − 𝛼𝛼𝑗𝑗)         ,∀𝑗𝑗 ∈ 𝐽𝐽𝑆𝑆 

        �𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝     ,∀𝑗𝑗 ∈  𝐽𝐽𝐷𝐷 

        𝑝𝑝𝑝𝑝 ��𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≥  𝑦𝑦𝑝𝑝𝑝𝑝�  ≥  (1 − 𝛼𝛼𝑘𝑘)         ,∀𝑘𝑘 ∈ 𝐾𝐾𝑆𝑆                                            (𝑀𝑀 − 2) 

       �𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑝𝑝𝑝𝑝          ,∀𝑘𝑘
𝑛𝑛

𝑖𝑖=1

∈  𝐾𝐾𝐷𝐷  

       �𝜆𝜆𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 

      𝜆𝜆𝑖𝑖  ≥ 0, (𝑖𝑖 = 1,2, … . ,𝑛𝑛)  

Where 𝛼𝛼𝑗𝑗: significance level for input j, 𝛼𝛼𝑘𝑘: significance level for output k, 𝐽𝐽𝐷𝐷  is the set of deterministic inputs, 
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𝐽𝐽𝑆𝑆 is the set of stochastic inputs, 𝐽𝐽 is the set of all inputs, where  𝐽𝐽𝐷𝐷 ∪ 𝐽𝐽𝑠𝑠 = 𝐽𝐽 and 𝐾𝐾𝐷𝐷 is the set of deterministic 
outputs, 𝐾𝐾𝑠𝑠 is the set of stochastic outputs, and K set of all outputs, where  𝐾𝐾𝐷𝐷 ∪ 𝐾𝐾𝑠𝑠 = 𝐾𝐾. 
Proof: see Land et al. (1993). 

Proposition 2: Assume  that  the random input variable (𝑥𝑥𝑖𝑖𝑖𝑖 ∈ 𝐽𝐽𝑠𝑠) are identically normal distributed and pairwise 
dependant (c𝑜𝑜𝑜𝑜(𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑝𝑝𝑝𝑝) ≠ 0), then the equivalent deterministic nonlinear model for the unified input oriented 
DEA model presented in the model (M-3) is as: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍𝑝𝑝 = 𝜃𝜃 
𝑠𝑠. 𝑡𝑡.                                                                           

  �𝜆𝜆𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜇𝜇𝑝𝑝𝑝𝑝

𝑛𝑛

𝑖𝑖=1

≤ 𝑒𝑒𝑗𝑗�(𝜆𝜆𝑝𝑝 − 𝜃𝜃)2𝜎𝜎𝑝𝑝𝑝𝑝2 + �𝜆𝜆𝑖𝑖2𝜎𝜎𝑖𝑖𝑖𝑖2 + 2𝜆𝜆𝑖𝑖𝜆𝜆𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑝𝑝𝑝𝑝)

𝑛𝑛

𝑖𝑖=1
𝑖𝑖≠𝑝𝑝

        ,∀𝑗𝑗 ∈  𝐽𝐽𝑆𝑆 

�𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝     ,∀𝑗𝑗 ∈  𝐽𝐽𝐷𝐷                                                                                             (𝑀𝑀 − 3) 

  𝑝𝑝𝑝𝑝 ��𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≥  𝑦𝑦𝑝𝑝𝑝𝑝�  ≥  (1 − 𝛼𝛼𝑘𝑘)         ,∀𝑘𝑘 ∈ 𝐾𝐾𝑆𝑆 

�𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑝𝑝𝑝𝑝          ,∀𝑘𝑘
𝑛𝑛

𝑖𝑖=1

∈  𝐾𝐾𝐷𝐷 

 �𝜆𝜆𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

                                                                                                        

 𝜆𝜆𝑖𝑖  ≥ 0, (𝑖𝑖 = 1,2, … . ,𝑛𝑛). 
Where 𝜇𝜇𝑖𝑖𝑖𝑖 = mean of input j for DMU i, 𝜎𝜎𝑖𝑖𝑖𝑖2  = variance of input j for DMU i. 
Proof: see El-Khodary, et al. (2010).  

Proposition 3: Assume that the random output variable (𝑦𝑦𝑖𝑖𝑖𝑖 ∈ 𝐾𝐾𝑠𝑠) are identically normal distributed and pairwise 
dependent (𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑝𝑝𝑝𝑝) ≠ 0), then the equivalent deterministic nonlinear model for the unified input oriented 
VRS DEA model presented in the model (M-4) is as: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍𝑝𝑝 = 𝜃𝜃 
𝑠𝑠. 𝑡𝑡.                                                                           

        �𝜆𝜆𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜇𝜇𝑝𝑝𝑝𝑝

𝑛𝑛

𝑖𝑖=1

≤ 𝑒𝑒𝑗𝑗�(𝜆𝜆𝑝𝑝 − 𝜃𝜃)2𝜎𝜎𝑝𝑝𝑝𝑝2 + �𝜆𝜆𝑖𝑖2𝜎𝜎𝑖𝑖𝑖𝑖2 + 2𝜆𝜆𝑖𝑖𝜆𝜆𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑝𝑝𝑝𝑝)

𝑛𝑛

𝑖𝑖=1
𝑖𝑖≠𝑝𝑝

        ,∀𝑗𝑗 ∈  𝐽𝐽𝑆𝑆 

       �𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝     ,∀𝑗𝑗 ∈  𝐽𝐽𝐷𝐷                                                                                           (𝑀𝑀 − 4) 

       �𝜆𝜆𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑝𝑝𝑝𝑝

𝑛𝑛

𝑖𝑖=1

≥ 𝑒𝑒𝑘𝑘�𝜆𝜆𝑖𝑖
2𝜎𝜎𝑝𝑝𝑝𝑝2 + �𝜆𝜆𝑖𝑖2𝜎𝜎𝑖𝑖𝑖𝑖2 + 2𝜆𝜆𝑖𝑖𝜆𝜆𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑝𝑝𝑝𝑝)

𝑛𝑛

𝑖𝑖=1
𝑖𝑖≠𝑝𝑝

              ,∀𝑘𝑘 ∈  𝐾𝐾𝑠𝑠        

       �𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑝𝑝𝑝𝑝          ,∀𝑘𝑘
𝑛𝑛

𝑖𝑖=1

∈  𝐾𝐾𝐷𝐷                                       

       �𝜆𝜆𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 

       𝜆𝜆𝑖𝑖  ≥ 0, (𝑖𝑖 = 1,2, … . ,𝑛𝑛). 

Where 𝜇𝜇𝑖𝑖𝑖𝑖 = mean of output k for DMU i, 𝜎𝜎𝑖𝑖𝑖𝑖2  = variance of output k for DMU i. 
Proof: El-Demerdash et al., (2016).  

Proposition 4: Assume that some of the input and/or output observations are fuzzy variables, the equivalent fuzzy 
input-oriented VRS DEA model for measuring the efficiency level of DMUp for the model (M - 1) is presented 
as below: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍𝑝𝑝 = 𝜃𝜃 
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𝑠𝑠. 𝑡𝑡.                                                                          

       �𝜆𝜆𝑖𝑖𝑥𝑥�𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝑥𝑥�𝑝𝑝𝑝𝑝        ,∀𝑗𝑗 ∈ 𝐽𝐽𝐹𝐹        

       �𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝     ,∀𝑗𝑗 ∈  𝐽𝐽𝐷𝐷                                                                                           (𝑀𝑀 − 5) 

      �𝜆𝜆𝑖𝑖𝑦𝑦�𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑝𝑝𝑝𝑝

𝑛𝑛

𝑖𝑖=1

        ,∀𝑘𝑘 ∈ 𝐾𝐾𝐹𝐹         

       �𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑝𝑝𝑝𝑝          ,∀𝑘𝑘
𝑛𝑛

𝑖𝑖=1

∈  𝐾𝐾𝐷𝐷                                       

       �𝜆𝜆𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 

       𝜆𝜆𝑖𝑖  ≥ 0, (𝑖𝑖 = 1,2, … . ,𝑛𝑛). 
Where 𝑥𝑥�𝑖𝑖𝑖𝑖 : fuzzy number for input j utilized by DMU 𝑖𝑖, 𝑦𝑦�𝑖𝑖𝑖𝑖: fuzzy number for output k produced by DMU 𝑖𝑖, 𝐽𝐽𝐷𝐷  
is the set of deterministic inputs, 𝐽𝐽𝐹𝐹  is the set of fuzzy inputs, 𝐽𝐽 is the set of all inputs, where  𝐽𝐽𝐷𝐷 ∪ 𝐽𝐽𝐹𝐹 = 𝐽𝐽 and 𝐾𝐾𝐷𝐷 is 
the set of deterministic outputs, 𝐾𝐾𝐹𝐹  is the set of fuzzy outputs, and K set of all outputs, where  𝐾𝐾𝐷𝐷 ∪ 𝐾𝐾𝐹𝐹 = 𝐾𝐾. 
Proof: see Girod (1996) 

Proposition 5: Suppose that the fuzzy input variables (𝑥𝑥�𝑖𝑖𝑖𝑖 ∈ 𝐽𝐽𝐹𝐹) are follow triangular membership function, then 
the equivalent crisp model for the input-oriented VRS DEA model using 𝛼𝛼-cut approach presented in the model 
(M-5) is as: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍𝑝𝑝 = 𝜃𝜃 
𝑠𝑠. 𝑡𝑡.                                                                          

       �𝜆𝜆𝑖𝑖𝑥𝑥�𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝑥𝑥�𝑝𝑝𝑝𝑝        ,∀𝑗𝑗 ∈ 𝐽𝐽𝐹𝐹        

𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀 + (1 − 𝛼𝛼)𝑥𝑥𝑖𝑖𝑖𝑖𝐿𝐿 ≤ 𝑥𝑥�𝑖𝑖𝑖𝑖 ≤  𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀 + (1 − 𝛼𝛼)𝑥𝑥𝑖𝑖𝑖𝑖𝑈𝑈        ,∀𝑗𝑗 ∈ 𝐽𝐽𝐹𝐹, 𝑖𝑖 = 1,2, … ,𝑛𝑛 

       �𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝     ,∀𝑗𝑗 ∈  𝐽𝐽𝐷𝐷                                                                                           (𝑀𝑀 − 6) 

      �𝜆𝜆𝑖𝑖𝑦𝑦�𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑝𝑝𝑝𝑝

𝑛𝑛

𝑖𝑖=1

        ,∀𝑘𝑘 ∈ 𝐾𝐾𝐹𝐹         

       �𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑝𝑝𝑝𝑝          ,∀𝑘𝑘
𝑛𝑛

𝑖𝑖=1

∈  𝐾𝐾𝐷𝐷                                       

       �𝜆𝜆𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 

       𝜆𝜆𝑖𝑖  ≥ 0, (𝑖𝑖 = 1,2, … . ,𝑛𝑛). 

Where 𝛼𝛼: 𝛼𝛼-cut level for fuzzy variables, 𝑥𝑥𝑖𝑖𝑖𝑖𝐿𝐿 : the lower value of input fuzzy variable 𝑗𝑗 utilized by DMU 𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖𝑀𝑀: 
median value of input fuzzy variable 𝑗𝑗 utilized by DMU 𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖𝑈𝑈: the upper value of input fuzzy variable 𝑗𝑗 utilized 
by DMU 𝑖𝑖. 
Proof: Tharwat et al., (2019)  

Proposition 6: Suppose that the fuzzy output variables (𝑦𝑦�𝑖𝑖𝑖𝑖 ∈ 𝐾𝐾𝐹𝐹) are follow triangular membership function, 
then the equivalent crisp model for the input-oriented VRS DEA model presented in the model (M-6) is as: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍𝑝𝑝 = 𝜃𝜃 
𝑠𝑠. 𝑡𝑡.                                                                          

       �𝜆𝜆𝑖𝑖𝑥𝑥�𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝑥𝑥�𝑝𝑝𝑝𝑝        ,∀𝑗𝑗 ∈ 𝐽𝐽𝐹𝐹        

𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀 + (1 − 𝛼𝛼)𝑥𝑥𝑖𝑖𝑖𝑖𝐿𝐿 ≤ 𝑥𝑥�𝑖𝑖𝑖𝑖 ≤  𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀 + (1 − 𝛼𝛼)𝑥𝑥𝑖𝑖𝑖𝑖𝑈𝑈        ,∀𝑗𝑗 ∈ 𝐽𝐽𝐹𝐹, 𝑖𝑖 = 1,2, … ,𝑛𝑛 

       �𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝     ,∀𝑗𝑗 ∈  𝐽𝐽𝐷𝐷                                                                                           (𝑀𝑀 − 7) 
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      �𝜆𝜆𝑖𝑖𝑦𝑦�𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑝𝑝𝑝𝑝

𝑛𝑛

𝑖𝑖=1

        ,∀𝑘𝑘 ∈ 𝐾𝐾𝐹𝐹       

      𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀 + (1 − 𝛼𝛼)𝑦𝑦𝑖𝑖𝑖𝑖𝐿𝐿 ≤ 𝑦𝑦�𝑖𝑖𝑖𝑖 ≤  𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀 + (1 − 𝛼𝛼)𝑦𝑦𝑖𝑖𝑖𝑖𝑈𝑈              ,∀𝑘𝑘 ∈ 𝐾𝐾𝐹𝐹 , 𝑖𝑖 = 1,2, … ,𝑛𝑛   

       �𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑝𝑝𝑝𝑝          ,∀𝑘𝑘
𝑛𝑛

𝑖𝑖=1

∈  𝐾𝐾𝐷𝐷                                       

       �𝜆𝜆𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 

       𝜆𝜆𝑖𝑖  ≥ 0, (𝑖𝑖 = 1,2, … . ,𝑛𝑛). 

Where 𝑦𝑦𝑖𝑖𝑖𝑖𝐿𝐿 : the lower value of fuzzy output variable 𝑘𝑘 produced by DMU 𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖𝑀𝑀: median value of fuzzy output 
variable 𝑘𝑘 produced by DMU i, 𝑦𝑦𝑖𝑖𝑖𝑖𝑈𝑈 : the upper value of the fuzzy output variable 𝑘𝑘 produced by DMU 𝑖𝑖. 
Proof: Tharwat et al., (2019)  

Proposition 7: Consider an input oriented VRS DEA model that deals with some of variables have different types 
of uncertainty (i.e. randomness and vagueness) in nature and the recent variables are deterministic in nature, then 
the equivalent deterministic unified input oriented VRS DEA model presented below: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍𝑝𝑝 = 𝜃𝜃 
𝑠𝑠. 𝑡𝑡.                                                                          

       �𝜆𝜆𝑖𝑖𝑥𝑥�𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝑥𝑥�𝑝𝑝𝑝𝑝        ,∀𝑗𝑗 ∈ 𝐽𝐽𝐹𝐹        

𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀 + (1 − 𝛼𝛼)𝑥𝑥𝑖𝑖𝑖𝑖𝐿𝐿 ≤ 𝑥𝑥�𝑖𝑖𝑖𝑖 ≤  𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀 + (1 − 𝛼𝛼)𝑥𝑥𝑖𝑖𝑖𝑖𝑈𝑈        ,∀𝑗𝑗 ∈ 𝐽𝐽𝐹𝐹, 𝑖𝑖 = 1,2, … ,𝑛𝑛 

       �𝜆𝜆𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜇𝜇𝑝𝑝𝑝𝑝

𝑛𝑛

𝑖𝑖=1

≤ 𝑒𝑒𝑗𝑗�(𝜆𝜆𝑝𝑝 − 𝜃𝜃)2𝜎𝜎𝑝𝑝𝑝𝑝2 + �𝜆𝜆𝑖𝑖2𝜎𝜎𝑖𝑖𝑖𝑖2 + 2𝜆𝜆𝑖𝑖𝜆𝜆𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑝𝑝𝑝𝑝)

𝑛𝑛

𝑖𝑖=1
𝑖𝑖≠𝑝𝑝

        ,∀𝑗𝑗 ∈  𝐽𝐽𝑆𝑆 

       �𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ≤  𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝     ,∀𝑗𝑗 ∈  𝐽𝐽𝐷𝐷                                                                                           (𝑀𝑀 − 8) 

      �𝜆𝜆𝑖𝑖𝑦𝑦�𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑝𝑝𝑝𝑝

𝑛𝑛

𝑖𝑖=1

        ,∀𝑘𝑘 ∈ 𝐾𝐾𝐹𝐹       

      𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀 + (1 − 𝛼𝛼)𝑦𝑦𝑖𝑖𝑖𝑖𝐿𝐿 ≤ 𝑦𝑦�𝑖𝑖𝑖𝑖 ≤  𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀 + (1 − 𝛼𝛼)𝑦𝑦𝑖𝑖𝑖𝑖𝑈𝑈              ,∀𝑘𝑘 ∈ 𝐾𝐾𝐹𝐹 , 𝑖𝑖 = 1,2, … ,𝑛𝑛   

      �𝜆𝜆𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑝𝑝𝑝𝑝

𝑛𝑛

𝑖𝑖=1

≥ 𝑒𝑒𝑘𝑘�𝜆𝜆𝑖𝑖
2𝜎𝜎𝑝𝑝𝑝𝑝2 + �𝜆𝜆𝑖𝑖2𝜎𝜎𝑖𝑖𝑖𝑖2 + 2𝜆𝜆𝑖𝑖𝜆𝜆𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑝𝑝𝑝𝑝)

𝑛𝑛

𝑖𝑖=1
𝑖𝑖≠𝑝𝑝

              ,∀𝑘𝑘 ∈  𝐾𝐾𝑠𝑠       

       �𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑝𝑝𝑝𝑝          ,∀𝑘𝑘
𝑛𝑛

𝑖𝑖=1

∈  𝐾𝐾𝐷𝐷                                       

       �𝜆𝜆𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 

       𝜆𝜆𝑖𝑖  ≥ 0, (𝑖𝑖 = 1,2, … . ,𝑛𝑛). 

Where 𝐽𝐽𝐷𝐷 ∪ 𝐽𝐽𝑆𝑆 ∪ 𝐽𝐽𝐹𝐹 = 𝐽𝐽 and 𝐾𝐾𝐷𝐷 ∪ 𝐾𝐾𝑆𝑆 ∪ 𝐾𝐾𝐹𝐹 = 𝐾𝐾. 

Proof: For proposing a unified input oriented VRS DEA model that allow input/output variables to be defined as 
deterministic, randomness and/or vagueness depending on the nature of uncertainty in the variables. The first 
constraint in model (M-1) is responsible for deterministic input variables in nature, in the model (M-4) represent 
the equivalent nonlinear deterministic for the constraint after applied chance constraint approach to be responsible 
for stochastic input variables in nature. Moreover, in the model (M-7) represent the equivalent linear crisp for the 
constraint after applied α-cut approach to be responsible for fuzzy input variables in nature.  
The second constraint in model (M-1) is responsible for deterministic output variables in nature, in the model (M-
4) represent the equivalent nonlinear deterministic for the constraint after applied chance constraint approach to 
be responsible for stochastic output variables in nature. Moreover, in the model (M-7) represent the equivalent 
linear crisp for the constraint after applied α-cut approach to be responsible for fuzzy output variables in nature. 
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3.2 The Flow Chart for Unified Input Oriented Data Envelopment Analysis   

 
 

Figure 1. the flow chart for unified input-oriented DEA 
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4. Illustrative Example  
To illustrate the significance of our unified input-oriented DEA model let’s consider this example. We have seven 
DMUs with three input variables, and two output variables. Two input variables are deterministic (Input 1, Input 
2) and one fuzzy (Input 3). The input fuzzy variables are assumed triangular fuzzy numbers having minimum, 
average and maximum values for each DMU. One output variable is deterministic (Output 1) and one stochastic 
(Output2). Data considered variable are shown in Table 1, to Table 3 respectively. Furthermore, we assume the 
α-cut level for the fuzzy variables is 0.5 and the level of significance for stochastic variable is 5% and hence 𝒆𝒆 will 
be 1.96. 

Table 1 Hypothetical data for the deterministic variables for the DMUs  

DMU Inputs Output 
Input 1 Input 2 Output 1 

A 6.11 4.36 0.21 
B 3.66 2.54 0.12 
C 1.44 0.48 0.14 
D 1.21 0.23 0.10 
E 2.75 1.40 0.10 
F 4.18 2.74 0.06 
G 6.39 3.36 0.18 

Table 2 Hypothetical data for the fuzzy variables for the DMUs  

DMU Input 3 
Lower Middle  Upper 

A 1.76 7.27 12.27 
B 3.85 4.65 5.53 
C 1.33 1.88 3.38 
D 0.78 1.48 2.06 
E 3.22 3.63 4.61 
F 4.30 6.13 8.03 
G 4.40 8.00 10.68 

Table 3. Hypothetical data for the stochastic variable for the DMUs 

DMU Output 2 
𝝁𝝁 𝝈𝝈𝟐𝟐 Covariances 

A 0.19 0.08 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐴𝐴 , 𝑦𝑦𝐵𝐵) =0.006 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐵𝐵 , 𝑦𝑦𝐷𝐷) = 0.006 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐶𝐶 , 𝑦𝑦𝐺𝐺) =0.004 
B 0.11 0.12 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐴𝐴 , 𝑦𝑦𝐶𝐶) = 0.003 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐵𝐵 , 𝑦𝑦𝐸𝐸) = 0.006 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐷𝐷 , 𝑦𝑦𝐸𝐸) = 0.004 
C 0.10 0.06 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐴𝐴 , 𝑦𝑦𝐷𝐷) = 0.004 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐵𝐵 , 𝑦𝑦𝐹𝐹) = 0.006 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐷𝐷 , 𝑦𝑦𝐹𝐹) = 0.004 
D 0.07 0.08 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐴𝐴 , 𝑦𝑦𝐸𝐸) = 0.004 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐵𝐵 , 𝑦𝑦𝐺𝐺) = 0.01 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐷𝐷 , 𝑦𝑦𝐺𝐺) = 0.006 
E 0.09 0.08 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐴𝐴 , 𝑦𝑦𝐹𝐹) = 0.004 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐶𝐶 , 𝑦𝑦𝐷𝐷) =0.003 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐸𝐸 , 𝑦𝑦𝐹𝐹) = 0.004 
F 0.07 0.08 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐴𝐴 , 𝑦𝑦𝐺𝐺) =0.006 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐶𝐶 , 𝑦𝑦𝐸𝐸) =0.003 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐸𝐸 , 𝑦𝑦𝐺𝐺) = 0.006 
G 0.18 0.12 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐵𝐵 , 𝑦𝑦𝐶𝐶) = 0.004 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐶𝐶 , 𝑦𝑦𝐹𝐹) =0.003 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐹𝐹 , 𝑦𝑦𝐺𝐺) = 0.006 

The aim of this problem is to determine the relative efficiency of the DMUs according to our developed model. 
The models are constructed and solved using GAMS (General Algebraic Modeling System) programming 
language software. The relative efficiency levels for DMUs are as shown in Table 4. 

Table 4 Relative efficiency level for each DMU  

DMU 
Unified Input 
Oriented DEA 

Model 
DMU Unified Input Oriented 

DEA Model 

A 0.81 E 1 
B 0.87 F 0.66 
C 1 G 0.59 
D 1   
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5. Results Validation  
DEA has several strengths (Manzoni and Islam 2007), but the most important is; it can include multiple inputs 
and outputs variables, there is no functional form relating inputs to outputs. Nevertheless, DEA has its weaknesses. 
One of the most important of these is that, since DEA is a nonparametric technique, statistical hypothesis tests are 
difficult to conduct, and assessing the strength or fit of the resulting model is correspondingly difficult. However, 
the devolved model must be validated. The most approach the researchers have used for validating DEA model is 
compared with dissimilar DEA models (Azadeh et al., 2015; Wang & Chin, 2011). 

For the above illustrative example, we will compare the relative efficiency of our developed model 
against 3 other different DEA models: 

1- Combined fuzzy/deterministic DEA model developed by Tharwat et al., (2019): in which (input 1, 
input 2 and output 1 are assumed deterministic and (input 3 and output 2) are assumed fuzzy. 
Mathematically, for output 2 – we took mean values as middle values and assumed values of lower 
and upper values as  𝜇𝜇 ± 𝜎𝜎. 

2- Combined stochastic/deterministic DEA model developed by El-Demerdash et al., (2016): in which 
(input 1, input 2 and output 1 are assumed deterministic and (input 3 and output 2) are assumed 
stochastic. Mathematically, for input 3 – we took average of the three values of fuzzy number as 
mean value and assumed the value of variance and covariance between DMUs. 

3- Deterministic DEA model (original model): in which all variable including (input 3, output 2) are 
assumed constant variables. Mathematically, for input 3 – we took the average values as 
deterministic values and for output 2 – we took the mean values as deterministic values. 

The models are constructed and solved using GAMS) programming language software. The relative efficiency 
levels for each DMU in four different DEA models are as shown in Table 5. 

Table 5 Relative efficiency level for each DMU for Different Models 

DMU 
Combined 

fuzzy/deterministic 
DEA Model 

Combined 
Stochastic/deterministic 

DEA Model 

Deterministic 
DEA Model 

A 1 0.59 1 
B 0.36 1 0.40 
C 1 1 1 
D 1 1 1 
E 0.44 1 0.46 
F 0.29 0.99 0.29 
G 0.80 0.84 1 

Examining the results in Table 4 and Table 5, we find that Efficiency results have change significantly across 
models. There is not trend in differences as for example DMU A was consider efficient in model 2 and 4 while it 
is inefficient in our model (0.81) and DMU E was consider inefficient in some cases and was considered efficient 
in our model, while it is not similar cases can be found with different models. In conclusion, model assumption 
regarding the nature of non-deterministic variables significantly affects the resulting efficiency. In another word, 
regardless the model type, for each inefficient DMU needed to improvement in the relative efficiency levels either 
decrease in one or more input or increase in one or more output or both. Therefore, it is obvious that the nature of 
the variable has an influence on the resulting relative efficiency levels.  

6. Applications of Data Envelopment Analysis 
It is well known that the main purpose of our developed DEA model is to evaluate the relative efficiency of 
homogeneous DMUs that consider some of input and output variables have uncertainty nature either stochastic 
and/or fuzzy and the remaining input and output variables are deterministic. The developed DEA model could be 
used in a great variety of application, for evaluating the efficiencies of many different kinds of entities engaged in 
many different activities in many different contexts in many different countries such as hospitals, universities, 
football teams, air force, banks, courts, business firms, and others, including the performance of countries, regions, 
etc. in addition to, the developed DEA model could be used to determine benchmarks (The set of efficient DMUs 
was used to establish an internal best practice benchmark to project career development plans for improving the 
performance of other inefficient DMUs), determine the efficiency for the same company over time, evaluate supply 
chain network operation efficiency (Improvement in the quality of all supply chain processes lead to cost 
reductions as well as service enhancement), investigate the efficiency of joining/integrating companies together 
(through measuring the efficiency of each individual company before merging and expected relative efficiency 
after the integration), perform before and after study (before to give recommendation for remedial actions, after to 

2456



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Dubai, UAE, March 10-12, 2020 

© IEOM Society International 

measure improvement in efficiency), and provide performance indices or measures for comparing efficiencies, 
and rate bonds. 

7. Conclusions 
Since exact data may not always be available in real life problem performance assessments due to the existence of 
uncertainty. As a result, DEA efficiency measurement may be sensitive to such variations. A DMU which is rated 
as efficient relative to other DMUs may turn inefficient if such uncertainty variations are considered, or vice versa. 
In another word, if the collected data for a variable is not represented in the correct form nature, then the resulting 
efficiencies will be erroneous and misleading because of the high sensitivity of the efficiency scores to the realized 
levels of inputs or outputs. 

 Therefore, a unified input-oriented DEA model is proposed to conduct performance assessments in uncertainty 
environments that able to deal with either input and/or output cases simultaneously, while the variables have 
vagueness or randomness in nature and the remaining variables are deterministic in nature. The model is tailored 
for fuzzy variables with triangular membership functions and has been handled using the α-cut approach, while 
the chance constraints programming approach was used to handle the stochastic variables. 

Through the illustrative example, it is noticed that the nature of the variable has an influence on the resulting 
relative efficiency levels and could toggle the status of the DMU from efficient to inefficient and vice versa. 
Therefore, it is necessary to identify the nature of the variable from the beginning and apply the appropriate DEA 
model to achieve reliable results. 
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