Harnessing Fourth Industrial Revolution(4IR) for Improving Poor Universities Infrastructure in Developing Countries-A Review

Thalente Nkosi, Ademilade Aboginije

Department of Construction Management and Quantity Surveying University of Johannesburg, South Africa

Nokulunga Mashwama, Wellington Thwala

SARChi in Sustainable Construction Management and Leadership in the Built Environment thalentelungile4@gmail.com, ademiladeaboginije@gmail.com

Abstract

Since there are most challenges and varying in the requirement of Fourth Industrial Revolution nowadays, there is a continuous requirement for higher education institute in emerging countries to harness 4IR for enhancing its unenhanced educational infrastructure within the universities. In order to ensure the "future readiness" of curricula, it call for Universities to cultivate not just required skills nowadays but similarly to those that will leverage the technological progresses of tomorrow, therefore there will be robust demand for professionals who can come up with a sense of balance between digital and STEM skills with traditional mechanical engineers and commercial arrangements data analytical tools to speedily adapt business approaches. This paper employ extensive literature reviews to drive the necessity of Universities in emerging countries to harness 4IR in order to enhance educational infrastructure. The aim of this study is to analyze the 4IR approaches which needs to be implemented within Universities to enhance educational infrastructure, the motives behind this and the actual function of 4IR within the Universities system, also this study aimed to recommend the most effective 4IR approaches which may lead to the highest satisfaction of students needs for the various universities infrastructure within the developing countries.

Keywords: Educational Development, Fourth Industrial Revolution, Poor Infrastructure, Technology advancement

1. Introduction

The Fourth Industrial Revolution plays an essential role in varying business models in countless industries. Manyika et al (2017) stated that prominent researchers contend that the 4IR's determination to form the future over its influences on government as well as industry. Publics take no control in excess of either expertise or the commotion that originates with the Fourth Industrial Revolution, on the other hand, people foresee the prospects that arises with the 4IR: lesser obstacles amongst inventors and marketplaces, extra vigorous role for the artificial intellect (AI), addition of dissimilar technics as well as dominions (synthesis), enhanced superiority of our lives (robotics) and the linked lifespan (Internet). The world economy flourishes on the continuous enhancement of numerous educational and training structures that will considerably influence its future workers (Maigida, Saba & Namkere, 2013). As Gray (2016) states "Change won't wait for us: business leaders, educators and governments all need to be proactive in upskilling and retraining people so everyone can benefit from the 4IR". Therefore, the responsibility to generate the models and settings to permit it to occur need to be taken, or else we will consume a generation with no lack of skills for the new demands of the labor market and that turns out to be a huge problem to society. Horch (2017) opined that students requisite to have a deep understanding on how they can relate, practice and spread over dissimilar understanding of expanded frameworks, what they actually mean and in what way it can produce collaborations amongst dissimilar subjects to produce "something" that links with actual world and this put us to a significant opinion:

it is essential that student's work in a framework of projects then from there they will have to cooperate with their classmates, lecturers and with the outside biosphere. According to Gray (2016) Industry 4.0 will need the world to produce an innovative generous worker, an informative worker, future industry leaders also executives need to adapt to new skill sets, towards bringing about, to take benefit of Industry 4.0. and they must be critical thinkers, problematic solvers, modernizers, correspondents, as well as deliver worth ambitious leadership. Sivathanu, B. Pillai. (2018) stated that it is vital to look forward to the technology at play to the inferences for the public's usage of that technology and they must possess deep understanding of the technology nevertheless meet and resolve every features of challenges produced by this technology. This compassionate leader needs an advance technology line of attack. Hillier (2017) stated that universities are celebrated as a motor vehicle for financial success over and done with digitalization which has enlarged student's admission into these institutions of higher education. Likewise, a key strategic drive recognized by Pretorius (2016b) is that companies crosswise all industries require to be vigorously and urgently investing in the reskilling of present workforces as portion of their transformation and future labor force preparation efforts. Adendorff & Balkaran (2016) also highlights that the government prerequisites to dismiss countless of its own myths about the public sector and the view that it has continued unharmed by the technological and digital enhancements and resourcing levels. Based on the context and background established above, the formulation of the main research problem for this paper is as follows: Despite the rising importance and possible major impact of the 4IR on global economies, Africa's challenges put it at risk of not being sufficiently ready to participate in and benefit from the 4IR, which is probable resulting to harmful influence on the CCIs Economy and socio-economic system of countries in

2. Literature Review

2.1 An Overview of Fourth Industrial Revolution (4IR) and its challenges in developing countries

Today's transformation does not represent just a perpetuation of Third Industrial Revolution but then again quite appearance of 4IR then separate any; speed, possibility and system influence. The speediness of existing innovations consumes no past pattern once related to former Industrial Revolution. The Fourth is developing at an exponential rather than an undeviating speed and disturbing practically all industries in all nations (Schwab 2015). Schwab further stated that the Fourth Industrial revolution is more than being "technology-driven change" and motorized by disturbing innovation it completely influences essential industries and segments like education, health and commercial. According to Schiuma (2017) with the former revolutions the main emphasis of teaching altered by the First Industrial Revolution education was concentrated on customary of education like the McGuffey the person who reads, with change on the road to the mass production in the 2nd Industrial Revolution education is facility leaning through the transfer to Third Industrial Revolution students are derived under customer education ideal but now with the 4IR technology distorted the appearances concerning corporeal, numerical as well as compasses. Jules (2017) stated that troublesome technology makes its particular approach to higher education institute as it re-identifies the conservative paths higher institutions bring gratified to student's and innovative models of learning then curriculum rise as the concentration fluctuate from styles of teaching to approaches of learning.

Al-Rodhan (2015) opined that disruptive revolution also redesigns how businesses function, new marketplaces are formed and new products are well-defined. According to the World Economic Forum (2016) the 4IR partakes from time when the 21st century as an innovative variation branded through the omnipresent and moveable Internet; inexpensive, lesser, and durable sensors; and fake and appliance for education (Schwab, 2017). Yun (2017) welldefined 4IR as the radical alteration that happens when IT multiplies in every business, that is, the primary, secondary, and higher education institutes therefore, it is an outcome of the plane development of IT. Hence, the 4IR topographies original linking amongst technology and the marketplace in all productions constructed on IT, the innovative and exposed grouping of technology and the marketplace over and done with open innovation, or growth based on the open business model. According to Schiuma (2017) the 4IR brings up development, positioning, plus corruption in all-inclusive smooth schemes that take part on technology humankind, and environmental science so they will be able to contract through old and different socio-economic and ecological encounters, considering the exact features of the situation at the big hand. Kodama (2017) defined 4IR as a worldwide infrastructure for the info civilization, allowing progressive facilities by intersecting (bodily and computer-generated) things built on current and developing interoperable ICT. 4IR has as many definitions but for the tenacity of this research Yun's explanation will be implemented. This study review evaluation attempts to provide an outline of 4IR within Universities by analyzing the 4IR ways of improving poor educational infrastructure within developing African Universities.

Schwab (2015) states that it is not known yet how the 4IR will reveal but one thing needed is that a reaction to it need to be cohesive and inclusive of all interested parties of the nation institution, since the private as well as public regions to educational and public society. The atrociousness challenges and extensiveness necessary for the answer are strengthened by Peters (2017). Jee (2017) pointed out that in order to enhance the superiority life for most of the people all over the nations the 4IR can increase revenue levels by permitting businesspersons to run their businesses with their new ideas, although users are probable want to obtain improvement from the fourth industrial revolution. "Innovation will also lead to a supply-side miracle, with long-term gains in efficiency and productivity". According to Schwab (2015) transport and the ways of delivering massages costs will decrease, logistics and worldwide source restraints will be more operative, and the rate of trade will decrease, all of which drive new flea market to open and drive financial development." (Schwab 2015) further stated that there are numerous challenges of the 4IR that lie into the future but there is also benefits of the 4IR simultaneously the revolution may perhaps yield superior inequality, especially in its possibly to dislocate labor market. In the, impending, aptitude, more than investment will epitomize the serious influence of production, the insufficient for the demand and greatest valuable assets in a period determined numerical technologies will be neither usual employment nor regular resources; reasonably it drive be persons who can produce new ideas plus revolutions (Brynjolfsson, McAfee, and Spence 2014).

Leswing (2017) stated that the mission for aptitude will increase occupation market that might develop progressively separated hence, little skillful and little salary occupations determination be altered by PCs and digitization, the greater compensated occupations demanding extra expertise are not as much of possible to be exchanged this augmented dichotomization can result to an upsurge in communal pressures. Wolf (2015) in adding to the danger of huge occupation movement under the continuing 4IR, there are a variation of challenges, like cybersecurity, riding out, danger valuation, and others. (Lambert 2017) highlighted that advanced level of warning is of a moral level once the animate turn into extensively linked to numerous devices, starting in our cellular phones, vehicles, and bright adjustments to our premise safety cameras, and insolent speakers. Goode (2018) stated that devising the whole thing devoted to everything also in the internet of things will make overwhelmingly rise the susceptibilities available in a little agreed network although the 4IR demands a better cybersecurity. When we considering the altering countryside of safety intimidations since staffs connect personal devices to business systems to instinctive strengthen assaults from hackers, the condition is additional problematical because also employees can steal data or it can be lost either unintentionally or deliberately, the main attacks in latest ages have been exterior hateful assaults, jointly or usually mentioned to as pony-trekking (Romney and Steinbart 2017).

2.2 Issues of unenhanced Infrastructure within Universities of developing countries

Characterizations of educational infrastructure differs across context. For example, Fisher (2000) separated university infrastructure components into physical & surface influences, whereas Boissieri (2004) described university infrastructure as a "hardware" as well as "software". Physical influences, rendering to Fisher, comprise structure life cycle and internal finishes, while surface influences comprise internal and external landscape and university surroundings. Boissieri defined "hardware" as university structures such as university schoolrooms & laboratories, equipment and hygiene and "software" as syllabus, university books and study resources. According to Sanoff (2001) educational infrastructure constituents comprise the quantity of students per lecturer, hygiene facilities, water on universities, electrical energy, PCs and method of communication technologies.

Madvewesi (2005) stated that students' acceptance in the universities should be established on the obtainable structure because it is approved that the current number of students registering in Universities is somewhat shameful when student lecturer percentage is shown. Emaraton (2003) in his study of students overcrowd, he stated that for great production in lecturer's side, there is definitely something essential need to be prepared to control number of students accepted into Universities. Ochuba (2005) pointed out that the higher institutions productive process is utilization of the university physical and human resources to produce educational activities and institutions of learning are to advance in relations to productivity and efficiency, then they must do so provided that they bring satisfactory and excellence structure and safety facilities converted into educational activities capable of motivating students to learning. Jeffery (2002) in his work on influence of the physical university setting on learning and literacy mentioned that universities are more than bricks and mortar, they are signs of commitment to education, they are designs that motivate good teaching, support productive learning, improves student's happiness and prompt feelings of security. Furthermore, Ehiametalor (2001) stated that chances should be given for proceedings during conferences and allied educational gatherings to affect policy. Its only by so doing the intelligent impacts can be felt on our national development.

The preserving of University amenities is significant for the well-being of people using the university such as students, lecturers and provision team and It is crucial intended for the raise of dynamic events and communal growth. Abandoning looking after facilities in universities leads to upsurge in cost of operational amenities and unwanted of correlated ordinary and monetary assets (Jackson, 2003). According to Banful (2004), the monetary problems of abandoning facility upkeep are frequently to be understood in terms of lowered building lifecycle and early ratification, but likewise raise the budget of functioning and unwanted natural and economic resources. There is no disbelief that rotting environment decreases the superiority of life and lead in some measure to disruptive performance (Wordsworth, 2001). Bastidas (2005) stated that a university preservation programme is a bodily activity that has to be adopted by the university communal so that it encompasses the lifecycle of the university structures, the equipment and apparatus. Buys (2004) says consistent preservation checkup the most significant principles in preservation managing by consuming consistent reviews of the university structure and all its amenities to detect any faulty labor, preservation effort can be approved before exclusive remedial preservation is needed.

Higher educational institutions either private or public have a tendency to ignore the prospective worth and the usage of Information & Communication Technology and they also tend to leg behind the practice of technology implementation. Fang (2002) highlighted that as the e-commerce, or e-Government represents the overview of a great movement of technological improvement by way as government reinvention. It symbolizes an amazing motivation to move on-ward on the 21st era thru advanced quality, budget efficiency management facilities and an improved association amongst countries as well as government. Ho (2002) defined e-Government as different things for different people. Ejsdc (2004) described e-Government as numerical constitutional data or a way of appealing in numerical communications with the clients. Most of the e-Government visions fail because of the slim and poor understanding of the e-Government concept and procedures, which needs all-inclusive explanations and considerate so that it can be able to strategies and tool an effective policy (Riley, 2001). Poor infrastructure can be prevented before it gets worse. To provide services in more well-organized and budget friendly without sacrificing quality, facilities management is about to harness these technologies in achieving efficiencies and adopting best practices. In a study by Ndiku (2003) he found that inadequate majority s of PCs and exterior procedures prevent placement of information & communication technology by lectures and Plante and Beattie (2004) stated that the lack of information & communication technology is a problem to combination of advanced technologies in most of the universities. Likewise, Okwudishu (2005) added on the knowledge by stating that the shortage of some ICT apparatuses in the university troubled lecturers' practice of ICTs. Underfunding is the main cause of this (Enakrire and Onyenenia (2007) and also the regular electrical energy disturbance causes a poor infrastructure in universities. Electrical energy problem has been a reported problem as it influencing ICT presentation and usage in universities since load shedding takes place in most of the times (Okiy and Ruteyan 2003). This causes few universities with ICT amenities unable to consume them frequently.

The government planned to incorporate information & communication technology into the University structures and offer Universities with infrastructure that help students learning to be able to produce good academic results. Most universities do not yet offer information & communication technology training programs (Goshit, 2006). Evoh (2007) opined that the information & communication technology in most universities remains the little monetary importance despite that majority of universities acknowledged ICT in enhancing teaching. He additional stated that some of the countries has no enough funds for implementation of information & communication technology in teaching. All this is the result of financial limitations, organization encounters, and scarcity of lecturers and some other learning tools. James (2001) stated if the policy makers could realize the important of information & communication technology in universities entirely states could also recognize the intentional part of information & communication technology, very few recognized a wide-ranging procedure. If such procedures be located present, they incline to continue unclear and make little orientation to application (Evoh, 2007). Egypt, (2005) stated that there is shortage of knowledge on how universities in emerging states fund their information & communication technology necessary resources. Bray, (2002) stated that the lack of sufficient funds is the key issue in the growth of education, because of lack of funding majority of higher educational institutes shortage of university structure, learning apparatus and public library etc. and because of this cause, anticipated outcomes cannot be attained. Bray, (2002) highlighted the New Public Management approach which is designed to reorganize universities like the private sector to make the most of output in university research and teaching

Goshit (2006) says the important issue that universities are experiencing and its ICT programme is employees teaching and lecturing as a formal in universities is seen as to be for persons, hence the insufficient professionals that are normally found choose to work in big companies and industries where they can obtain superior salaries. Because of this disgraceful situation, lecturers are not inspired to further steps in supporting the students to get laptop for education

(Oduroye, 2005). Also, cost has been said to be the most issue which influences establishment and usage of information & communication technology amenities (Adomi, 2006). The price of PCs is as well great for some of the students to pay for. Continuing amounts of money required for internet is excessive and the charges for cable TV's are very expensive for some persons in universities (Chiseuga 2003). Brake (2003) says that because of high costs of installing it has made it difficult for the universities in developing countries to attain and connect information & communication technology's amenities for lecturers and students to be able to use.

3. Research Methodology

This study exploits existing literatures from published research journals and conference proceedings with the aim of understanding the situation of poor universities infrastructure in developing countries. This study reviewed literatures on poor universities infrastructure, factors causing poor infrastructure, and how 4IR can be harnessed to improve poor infrastructure in developing countries.

4. Findings and Discussion

4.1 The impact of unenhanced educational infrastructure on students' academic performance within universities.

A study by Fisher (2000) on the influences of university infrastructure on students' performance and student's manners he recognized that academic performance improves with improved university structure, the electricity energy and heats. furthermore, he recognized an association amongst university classroom size plus student achievements also consuming large classrooms interrupts student's ability to perform well. Mark (2002) in a study of aspects influencing students' achievements in institutions he mentioned that it cannot be expected that students obtain good results at the end of each year wherever institutions structures are unwell situated and poor. He further highlighted that when buildings are well organized namely laboratories, classes and libraries, spotless, silent, harmless and contented are significant mechanisms of fruitful education and learning. A study by Lackey (2001) on overloaded of student's universities he stated that students in institutions obtained importantly lower marks in modules. Furthermore, he when enquired students' and lecturers in overloaded institutions they have said that with overloading influenced class events together with the instructional practices. Research laboratory and practical workspaces are very important in education and learning procedures.

The only way that could help these infrastructure mend excellence teaching is contingent to their positioning of their structures and amenities they currently have. According to (Ajayi, 2007) he stated that it is not doubtful that good education structures in relations of locality, constructions and amenities will however influence education and students learning procedure and as well as improved good educational achievement of the students'. Straub (2011) stated that improved infrastructure is significant to educational growth and it is nowadays properly noticed and broadly known and understood by most policy producers. Romp & de Haan (2007) pointed out that improved capacity and excellence of infrastructure can conventional rise the efficiency of human and corporal wealth and hence development such as improved teaching and marketplaces for agriculturalists' productions and some others by lowering costs, enable reserved asset, ideal jobs and salary levels for most employees.

O'Neill (2000) opined that when the facilities are gradually tautened in contradiction of external air penetration it will make the building not being able to produce more energy proficient. Rydeen (2003) notes that architects who construct healthy institution of higher education permit students and staff to concentrate on the education procedure, while buildings need to be designed to be healthy. The existence of mildew could create breathing difficulties for students and teachers or even result to the closing of the lecture hall or whole building (Kennedy, 2003). Co-curricular infrastructure benefits the students to participate in dissimilar events which supports in increasing the students bodily, publically, mentally and emotionally Ng'anga (2003). The placing and obtainability of satisfactory playing fields and essential machines for talent development must be healthy located and well-structured for cultivation talents in students (Khaemba 2007), According to Stephens & Schaben (2002) contemporary approaches of teaching lay emphasis on all round progress of students.

4.2 The benefits of improved educational infrastructure within universities

Buildings, classrooms, laboratories, and equipment's of education are the most significant components of educational infrastructure in universities. Fedderke (2005) stated that there is resilient indication that great excellence structure in universities ease improved teaching, enhances student's achievements, and lowers the amount of students who drop out. In a study by Calderon (2011) on the arguments about the appropriate econometric demonstrating partake amongst researchers on the significant influence of educational infrastructure, the discussions further explained that the university contributes toward the growth domestic product level and educational development (Romp & de Haan 2007). Dixon (2008) emphasized that improved infrastructure is important to expansion of counties and has a straight influence on commercial production and development. Baldwin (2008) stated that operative structures provide supports to financial development, improves excellence of lifetime and important intended for nationwide safety. Furthermore, the findings of Bristow and Nellthorp (2000) demonstrates that university structure does not just influences the wellbeing (period, budget savings and cumulative protection) consumes not only noticeable influence on surroundings but then again also straight influences benefits (by period and total cost savings and cumulative protection) but also observable influence the (occupation, financial development). It is likely to discover that optimistic remaining welfares of infrastructure savings depreciate quickly as a result of lack of maintenance and incompetent institutes.

In a study by Poor (2008) he stated that ICT in universities offers numerous amenities and potentials for learning officers to perform their accountabilities and he also highlighted that the ICT has enhanced way of teaching. Poor also stated that there is improved productivity and efficiency in an organization through an ICT. In a study by Bukukbayikal (2015) he opined that technology advancement has created new opportunities in the area of learning. Tongkaw (2013) found that most of the universities are preliminary integrating the usage of ICTs in many things such as management, education and studies whereas Matovu (2009) in his study in usage of ICT in handling students' educational affairs point out that better-quality ICT will make easier the programing of marks, best record protection, location and marking exams papers and admission. He further stated that ICT is also used exchanging of information between the lecturers and students in universities via emails and to other staff members for sending final results to students on blackboards and transcriptions. According to Chinyemba and Ngulube (2005) once the ICT is properly implemented and when university records are properly managed in universities it might assist the campuses to monitor their info efficiently and safeguard them from legal processes.

UNESCO (2003) stated that the higher education institutes is also related to a variety of having no economic important benefits such as improved health, a sense well-being, Government globally supports the region money-wise. OECD (2010) revealed that during the last decade higher education has encouraged economic wealth, increased in employment rate and social unity therefore, universities invested in human capital. According to the STATsSA (2010) Universities have factually always been significance in the dominion of knowledge. Though from the time when mass production raised after World War II, higher education has altered the structure of learning and its became very important for occupation, social flexibility and economic development, therefore the significant of higher education industry is recognized worldwide (STATsSA, 2010). Vinkler (2008) clearly indicates that universities returns are powerfully positive and greater those for investment and returns in social are greater. KPMG (2000) reported that university funding of GDP has increased which marks the university as an important industry.

There are two kinds of economic collaboration the universities partake for output and employment in other sectors:

- (a). Unintended special effects in order for higher institutions to be able to maintain their own activities universities buy goods and services from other subdivisions, the distributing industries as well purchase from other dealers to accomplish university orders, and individual's dealers in turn purchase from others, so there is an undulation influence (Lee L-C, Lin P-H & Chuang Y-W, 2011)
- (b). Persuaded special effects universities spend revenues by paying salaries and wages which in turn devote income on consumer goods and amenities. This expenditure generates wage revenue for staffs in other subdivisions, who likewise devote their revenue and so on, making an undulation influence all over the economy (Inglesi-Lotz R, Balcilar M &Gupta R, 2013).
- 4.3 Fourth industrial revolution's approaches which may lead to the highest satisfaction of students needs for the various universities

Marwala (2017) stated that in order for education to revolutionize the technique in which lecturers teach and impart knowledge to student's and how they study education need to recognize wearables technology within the institutions. According to Marwala (2012) & Marwala (2010), the auricle of 4IR is a beneficial technique designed for engineers headed for evaluation then estimate the circumstance of actual biosphere corporeal systems and when the state of

living of cyber physical systems turn out to be a new custom, arithmetical imitations partake an ever-rising significance together in education and practical requests. Marwala further stated that the predetermined element analysis (PEA) is an adaptable tool which has been practiced in numerous engineering streams like investigating buildings and with the development of wearables technologies operator's senses and communication with the physical sphere can be improved by initiating a computer-generated laboratory. Xing (2015) stated that students required to crease in lecture halls to be able to hear the lecturer or be seated around the desks to deliberate with peer's colleagues, hence technologal innovation is calming those restraints, though and conveying fundamental variation to higher education institute. Xing also opined that MOOC's is a method of education that offers separate teaching online. Gao (2014) revealed that since the supreme amount of students can be crushed into lecture rooms and examination- marking time table are imperfect, MOOC'S can reduce the problems by functioning totally different; off university grounds and when the online courses are formed, teaching additional students turn out to be an advantage.

Most emerging and under developing countries fails innovative capacity, more particularly at the great end to completely grip the chance of a different movement of industrialization, a nation's higher education institute schemes should not only concentrate on teaching only skilled people with expertise knowledge but also need humanizing innovative capacity, more particularly great level scientist also technicians (Mesquita & Peres 2015). These technologists must be skilled in an interdisciplinary location where technologists should have a deep understanding of humankinds and communal discipline and vice versa. Microeconomics is a vital matter in higher education institute which contains both communal and applied value (Marwala, 2013; Marwala, 2014; Marwala, 2015) although best of its conceptions demonstrates a great level of concept which frequently executes abundant problems for students to absorb it hence, in numerous circumstances, the ideas are inaccessible, deprived of inclusive understanding the associations of each portion of information points on the entire image. Marwala (2015) further stated that to discourse this matter, we have faith in a sweeping mixed education (i.e., blended e-learning and face-to-face learning methodology) may result to this and t is recognized that computer-generated environments provides countless informative value in the progression of information broadcast together with reactive input, either in real time (e.g., video conferences), or non-simultaneous contributor's involvement (e.g., forums and chats).

Xing and Gao (2014) stated that under development of 4IR, higher education systems must position innovation, both as gradually development and radically change very great on its agenda since all-purpose, innovations founded on prevailing technologies are so called gradually growth type whereas radically change innovation concentrations are on creations of new technologies. According to Xing (2017) in the era of the 4IR, higher education institute prerequisites to be contingent to its technology system restructurings by suddenly cease to function all barriers to innovation and for those technological innovations that are significant for development, re-industrialization and neoindustrialization, the monetary support from higher education and government levels must be completely obtainable. According to Marwala (2007) technology-driven R&D derives in numerous forms and it can mean engaging moveable capabilities to enhance data gaining accurateness; using progressive big data analytics to advertisement numerical patterns; artificial intellect methods to retool information exploration, group, society and knowledge detection therefore, new technological developments are frequently categorized as significant heavy force. Marwala (2010) stated that the bottommost line is that the progressive skills can be leveraged through numerous areas to endure delivery influence and progressive technologies can take along welfares to higher education in at least four capacities: cost and timeline decrease; operation alteration; process improvement; and, greatest important, examination direction innovation via the creation of new ideas and theories.

Xing (2014) stated that under industry 4.0, the continuing alteration to platform-based rivalry ran through numerous armed forces: learning accomplishments; omnipresent computing and Internet of things (IoT) together inside also outer campus and the challenging students in expressions of modified education. Xing (2017) opined that University-as-a-Platform (UaaP) provides the present University system a chance to direct their bread-and-butter big business to platform trades for an improved facility routine. main motorists for a fruitful UaaP include: a) distribute inter-, multi-, and a cross-disciplinary degree; b) a suitable combination of facility models (e.g., mixed learning, MOOCs, etc.); c) the appearance of Internet of the whole thing; d) the addition of unchanging teaching activities into software through an overabundance of institution system; e) up-to-date digital substructure; and f) improved connectivity amongst all gatherings exist in Universities worth chain. Lee et al. (2018) argue that government institutes must implement procedures that can stand-in two key policies: one to oversee techno-digital alteration over and done with difficulties of technologies and carrying out tests, and one to funding control and humanoid capital growth, which also involves innovative classifications of education objectives in study and higher education institute. Schwab (2016) proposes that responsive procedures of government will be required to assist controllers and representatives to endlessly get used to a new fast-varying societal and financial environment devoid of roasting innovation, which as well will comprise and

entail forms of bigger teamwork amongst national institutions, public society and commercial businesses so that it will form regulations and his will also need the consolidation of institutes for research and higher education.

Approaches should deliver clear rules on how government should answer back properly to demands of the digital, linked as well as smooth environment, the necessity for approachable approaches particularly in developing countries cannot be overstressed and the challenging part is not the lack of line of attack, slightly the failure of approaches to respond to the native situation (Ndou, 2004; Irani, 2005; Chen, Chen, Huang, & Ching, 2006; Majdalawi, Talmarabeh, Mohammad & Quteshate, 2015). Failing to acclimatize the so named "best practices" to the native context frequently outcomes will poorly abstract approaches (Manda & Backhouse, 2016b). Abilities, innovation schemes, and knowledge societies deliver the abundant required knowledgeable leadership in the expansion also application of insolent plus digital creativities (Abdoullaev, 2011; Scholl & Scholl, 2014). E-readiness (e-skills and e-literacy) have also been acknowledged as essential in the accomplishment of the so-called insolent civilization (Manda & Backhouse, 2016b). Expertise obstacles recognized comprise expertise bad fit and expertise joblessness varying countryside of occupations as a consequence of improvements in technology and industrial techniques (World Economic Forum, 2016). Furthermore, the e-readiness (e-literacy and e-skills) effect the inhabitants' capability to completely contribute in societal and economic activities in the insolent society (Manda & Backhouse, 2016b). Little e-readiness levels in emerging nations have been quoted as an interruption in the transformation to insolent societies (Ngulube, 2007; Manda & Backhouse, 2016b).

Safety and data privacy problems have debatably turn out to be one of the greatest important worries in the 4th industrial revolution everywhere technology has turn out to be a motorist (Waidner & Kasper, 2016). Addition of systems in the 4IR needs expansion of new safeguard mechanisms for quicker also suppler collective worth networks and smooth production systems (Waidner & Kasper, 2016). The enlarged usage of data analytics is also probable working on bringing new challenges when problems of data privacy and protection arise (Waidner & Kasper, 2016). Furthermore, privacy and security worries in technology take along faith issues in the "smart" era (Manda & Backhouse, 2016a). Most of emerging nations are not challenged only by social challenges but then again technological and infrastructural problems. Zhou, Liu & Zhou (2016) recognized challenges nearby the overview of new technologies like analytics, expansion of systems and insolent devices. Deprived ICT infrastructure in emerging nations is a consequence of the main challenges probable to put it to governments in their proposal to introduce industry 4.0 and poor broadband diffusion was bringing into being the hindrances delaying alteration to the so-named smooth society ambitious thru numerical linkage, innovative technology, talents, understanding, and revolution to institution financial and communal growth (Manda & Backhouse, 2016b).

5. Conclusions

This study gives a comprehensive understanding on the important of having Universities infrastructure in a good condition so that students will be able to produce good results. If we were to put an eye on learning schemes, the information acquired by experimentation is obvious: classrooms, laboratories and libraries that are accordance with sustainability is crucial for students to be able to attain good academic achievements but also in Universities there is lack of ICT facility. In additional, the circumstances of the universities directly impact the performance of the students. The truth remains universities infrastructure with transformed workspaces such as technology innovation, creates an easy way for students living in distant regions to learning. The Literature also revealed that student's satisfaction within universities is very essential it's not only how much a student enjoys their time at university but also how well they perform for example course participation, their relationships with lectures, the environment they living in, attendance and employability once they leave are all. The study further highlighted that when a university's facility is arranged in the proper organizational context it can add to delivery of quality education and improved organizational performance. The 4IR ways of improving infrastructure were also identified in the literature as it plays a critical role in accelerating technology progress categorized by new revolutions whose speedy use and dispersal grounds an unforeseen in the social order, its functions on research, innovations also skill creation as ways of producing the good infrastructure in universities. From the review of literature in this study, the author said that 4IR and its components are needful within the universities infrastructure as it resolves infrastructural challenges, safety and data confidential settings, implements the application of insolent and digital, implements policies within government institutions, it makes University a platform, introduces new technological advancement driven research and development, simplifies combined learning, humanize innovative capacity, squeezes 'massive open online courses" it also introduce wearables technology supported education, knowledge, and teaching with all these technology innovation being achieved it will make the students to attain good academic results. In order for students to achieve excellent academic results the universities must overcome its poor infrastructural challenges such as students overload within Universities, lack of educational infrastructural maintenance, negligence of ICT, lack of ICT facilities within Universities, deprived ICT

approach, limited university budget, inadequate ICT manpower within the universities and high cost of ICT facilities. Since the university have been overwhelmed as the property that has poor educational infrastructure 4IR is therefore needed.

References

- Adomi, E.E., & Anie, S.O., An assessment of computer literacy skills of professionals in Nigerian university libraries. Library Hi Tech News 23 (2): 10-14, 2006.
- Al-Rodhan, N., The Moral Code: How to Teach Robots Right and Wrong. Retrieved from https://www.foreignaffairs.com/articles/2019-08-12/moral-code.
- Abdoullaev, A., Keynote: A Smart World: A Development Model for Intelligent Cities. In The 11th IEEE *International Conference on Computer and Information Technology* (CIT). IEEE, 2011.
- B. Xing, "Massive online open course assisted mechatronics learning_a hybrid approach," in Furthering Higher Education Possibilities through Massive Open Online Courses, Chapter 12, pp. 245-268, 2005.
- Baldwin R, Black J (2008) Really Responsive Regulation. Modern Law Review 71, 59-94.
- Banful E, A Stitch in Time Saves Nine: Cultivating a Maintenance Culture in Ghana, an Article Presented at a Seminar on Maintenance Culture in Banful, E. A Stitch in Time Saves Nine: Cultivating a Maintenance Culture in Ghana, March 16, 1-2, 2004.
- Boissiere, M., Determinants of Primary Education outcomes in Developing Countries. World Bank Operations Evaluation Department. The World Bank, Washington DC, 2004. http://www.worldbank.org.ed.
- B. Xing, "Visible light based throughput downlink connectivity for the cognitive radio networks," in Spectrum Access and Management for Cognitive Radio Networks, Chapter 8, pp. 211-232, M. A. Matin, Ed., ed Singapore: Springer Science+Business Media, ISBN 978-981-10-2253-1, 2017.
- Brakel, P.A., & Chisenga, J., Impact of ICT based distance learning: The African story. The Electronic Library 21 (5), 476-486, 2003.
- Bray, M., The Cost and Financing of Education: Trends and Policy Implications. Manila: Asian Development Bank, 2002.
- Brynjolfsson, E., McAfee, A., & Spence, M. (2014). New World Order: Labor, Capital, and Ideas in the Power Law Economy. *Retrieved from https://www.foreignaffairs.com/articles/united-states/2014-06-04/new-world-order*.
- Büyükbaykal, C. I., Communication technologies and education in the information age. *Procedia-Social and Behavioral Sciences*, 174, 636-640, 2015.
- Buys, N., Building Maintenance Management Systems in Tertiary Institutions in South Africa. University of Port Elizabeth: Unpublished PhD thesis in Construction Economics, 2004.
- Ehiametalor, E.T., Institute facilities: Management practice in Nigeria. In N.A. Nwaguru, 2001.
- Ehiametalor, E.T, and Ogundu, M. Nwadiami (Eds), current issues in educational management in Nigeria, 305-319. NAEAP Publication, Benin City, Ambik Press Ltd, 2001.
- Emetarom, U.G., Provision and management of facilities in primary schools in Nigeria: implication for policy formulation. A paper presented at the Annual National Conference of the Nigeria Association for Educational Administration and Planning, at the University of Ibadan 28th 31st October, 2003.
- Enakrire, T.R. and Onyenania, O.G., "Factors affecting the development of information infrastructure in Africa", Library Hi Tech News, Vol. 24 No. 2, pp. 15-20, 2007.
- Evoh, C.J., Policy networks and the transformation of secondary education Through ICTs in Africa: The prospects and challenges of the NEPAD E-schools Initiative. *International Journal of Education and Development Using Information and Communication Technology* (IJEDICT) 3 (1), 64-84, 2007.
- Fang, Z.Y., E-Government in Digital Era: Concept, Practice and Development. International Journal of the Computer, the Internet and Management, 10, 1-22, 2002.
- Fedderke, J., Perkins, P. and Luiz, J., Infrastructure Investment in Long-run Economic Growth: South Africa 1875 2001, 2005.
- Fisher, K., Building better outcomes: The impact of school infrastructure on student outcomes and behavior. Schooling Issues Digest, Canberra: Australia, 2019.
- Goode, L., Everything Is Connected, And There's No Going Back. The Verge, 2018 Retrieved from https://www.theverge.com/2018/1/17/16898728/ces-2018-tech-trade-shows-gadgets-iot.
- Goshit, T., Nigeria's need for ICT: SP. 259 technology and policy in Africa, 2006 Available:http://ocw.mit.edu/NR/rdonlyres/Special-Programs/SP-259Spring-2006/891209EE-E63B-4617-BA9D-7635A63C754B/0/goshit.pdf.

- Gray, A., The 10 skills you need to thrive in the Fourth Industrial Revolution, 2016. Retrieved from https://www.weforum.org/agenda/2016/01/the-10-skills-you-need-to-thrive-in-the-fourth-industrial-revolution/
- Ho, A. T., Reinventing Local Governments and the E-Government Initiative. *Public Administration Review*, 62(4), 434-444, 2002.
- Horch, D., Promise or Peril: Decoding the Future of Work, 2017. Retrieved from https://www.weforum.org/agenda/2017/01/promise-or-peril-decoding-the-future-of-work/
- Inglesi-Lotz R, Balcilar M, Gupta R., Time varying causality between research output and economic growth in US. Scientometrics. Forthcoming 2013.
- Jackson, S.E, Joshi, A. and Erhardt, N.L., Recent Research on Team and Organization Diversity: SWOT analysis and implication" Journal of Management 29, 6 pp 801-830, 2003.
- James, T. (Ed.)., An information policy handbook for Southern Africa: A knowledge base for decision-makers. Johannesburg: *International Development Research Center's (IDRC) Regional Office for Southern Africa*, 2001.
- Jee, Y.-S. (2017). Exercise rehabilitation in the fourth industrial revolution. *Journal of Exercise Rehabilitation*, 13(3), 255-256, 2017.
- Jeffrey D. S., Director of the Earth Institute at Columbia University and is a special adviser to the UN secretary-general on the UN Millennium Development Goals, 2003.
- Jules, T. D. (Ed.)., Public Policy and Governance. The Global Educational Policy Environment in the Fourth Industrial Revolution: Gate, Regulated and Governed. United Kingdom: *Emerald Group Publishing Limited*, 2017.
- KPMG. Economic modelling of improved funding and reform arrangements for universities. Canberra: Universities Australia; 2009.
- Kodama, F.; Shibata, T. Beyond fusion towards IoT by way of open innovation: An investigation based on the Japanese machine tool industry 1975–2015. J. Open Innov. Technol. Mark. Complex. 2017, 3, 23.
- Kennedy, M., Comfort zone. American School and University, 75(8), 20-25, 2003.
- Lambert, L., The Four Challenges of the Fourth Industrial Revolution. Market Mogul, 2017. *Retrieved from https://themarketmogul.com/industry-4-0-challenges/?hvid=2Gt2CE*.
- Lee L.C, Lin P.H, Chuang Y.W, Lee Y.Y., Research output and economic productivity: A Granger causality test. Scientometrics. 89:465-478, 2011. http://dx.doi.org/10.1007/s11192-011-0476-9.
- Lee, M., "How to respond to the fourth industrial revolution, or the second information technology revolution? Dynamic new combinations between technology, market, and society through open innovation". *Journal of Open In-novation: Technology, Market, and Complexity*, 2018.
- Leswing, K., Apple CEO Tim Cook: 'If I were a country leader, my goal would be to monopolize the world's talent'. Business Insider. Retrieved from http://www.businessinsider.com/apple-ceo-tim-cook-if-i-were-world-leader-my-goal-monopolize-talent-2017-9.
- Margarita Calderon., Teaching, Reading & Comprehension to English Students K-5. Bloomington, IN: Solution Tree Press. 2011.
- Manyika, J., Harnessing Automation for A Future That Works, 2017. Report by McKinsey Global *Retrieved from http://www.mckinsey.com/global-themes/digital-disruption/harnessing-automation-for-a-future-that-works*.
- Maduewesi, E.J, Ezeanya, E.N, and Gwandu, G., Curricular reform and innovation in African tertiary institutions for quality teaching and research. In Maduewesi, E.J. 2005. Benchmarks and Global Trends in Education. Benin; Dasylva Influence Enterprises.
- Maigida J.F, Saba T.M & Namkere, J.U., Entrepreneurial Skills in Technical Vocational Education and Training as A Strategic Approach for Achieving Youth Empowerment in Nigeria. *International Journal of Humanities and Social Science. Nigeria.* Vol. 3 No. 5; pp.1-8. National Bureau of Statistics, 2010.
- Manda, M.I & Backhouse, J., Addressing trust, security and privacy concerns in e-government integration, interoperability and information sharing through policy: a case of South Africa", 2016. Proceedings of the 2016 *International Conference on Information Resources Management* (CONF-IRM). Paper 67.
- Marwala, I. Boulkaibet, and S. Adhikari, Probabilistic finite element model updating using Bayesian statistics: applications to aeronautical and mechanical engineering. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom: John Wiley & Sons, Ltd, ISBN 978-1-1191-5301-6, 2017.T.
- Marwala, I., Condition monitoring using computational intelligence methods: applications in mechanical and electrical systems. London: Springer-Verlag, ISBN 978-1-4471-2379-8, 2012.T.
- Marwala, I., Finite-element-model updating using computational intelligence techniques: applications to structural dynamics. London, UK: Springer-Verlag, ISBN 978-1-84996-322-0, 2010.
- Marwala, I., Economic modeling using artificial intelligence methods. Springer London Heidelberg New York Dordrecht: Springer-Verlag London, ISBN 978-1-4471-5009-1, 2013T.

- Marwala, I., Artificial intelligence techniques for rational decision making. Springer Cham Heidelberg New York Dordrecht London: Springer International Publishing Switzerland. ISBN 978-3-319-11423-1, 2014.
- Marwala, T., Causality, correlation and artificial intelligence for rational decision making. 5 Toh Tuck Link, Singapore 596224: *World Scientific Publishing* Co. Pte. Ltd, ISBN 978-9-81463-086-3, 2015.
- Marwala, T., Computational intelligence for modelling complex systems. Research India Publications, Delhi, ISBN 978-81-904362-1-2, 2007.
- Marwala, T., Mahola, U., and F.V. Nelwamondo, "Hidden Markov models and Gaussian mixture models for bearing fault detection using fractals, In the Proceedings of the International Joint Conference on Neural Networks, BC, Canada, pp. 5876-5881, 2006.
- Matovu, M., Availability, accessibility, and use of ICT in management of student's affairs in Makerere university. Research dissertation submitted to Graduate school, Makerere university, 2009.
- Mesquita and P. Peres, Eds., 701 E. Chocolate Avenue, Hershey PA, USA 17033: IGI Global, ISBN 978-1-4666-8279-5, 2015.
- Ndiku, L., The problem encountered by school personnel in the implementation of computer use in schools in Uasin Gishu District. Unpublished thesis: Moi University, Eidoret, 2003.
- Ndou V., E-government for developing countries: opportunities and challenges. The electronic Journal of Information Systems in Developing Countries, 18(1) 1 24, 2004.
- Ngulube, P., Implications of technological advances for access to the cultural heritage of selected countries in sub-Saharan Africa. Government Information Quarterly: *An International Journal of Information Technology Management, Policies, and Practices* 21 (2):143-155, 2004.
- Oduroye, A.P. (n.d.) Challenges of learning and teaching with computers. *Available:* http://www.itnetwork.org.uk/56.htm.
- Okwudishu, C.H., Awareness and use of information and communication technology (ICT) among village secondary school teachers in Aniocha South Local Government Area of Delta State. Abraka: Delta State University. Unpublished B.Sc. (LIS) project, 2005.
- Ochuba V.O., Strategies for improving the quality of education in universities. In N.A. Waguru, E.T. Ehiametator, M.A. Ogunu and M. Nwadiani (Eds), current issues in educational management, A publication of the Association for Educational Administration and Planning, 413-423, 2001. *NAEAP Publication, Benin City; Ambik Press Ltd.*
- OECD., E-learning in tertiary education. Policy brief by the organization for Economic co-operation and development, 2005.
- Okiy R.B., Quality Assurance and the Management of the university Library System: Committee of University Librarians, Library Hi Tech News, 6, 24-26., 2006.
- O'Neill, D., "The impact of school facilities on student achievement, behavior, attendance, and teacher turnover rate at selected Texas middle schools in region XIII ESC", unpublished PhD thesis, Texas A and M University, College Station, TX, 2000.
- Peters, M. A., Technological Unemployment: Educating for the Fourth Industrial Revolution. Journal of Self-Governance and Management Economics, 5(1), 25-33., 2017. https://doi.org/10.22381/JSME5120172.
- Plante, J., & Beattie, D., Connectivity and ICT integration in Canadian elementary and schools: First results from the Information and Communications Technologies in Schools Survey, 2003 –2004.
- Poor, H.Z., Administration of faculties by information and communication technology and its obstacles. International *Journal of education and information technologies* 2(1), 36-42, 2008.
- Riley, T.B., Electronic governance and electronic democracy: Living and working in the wired world. London: Commonwealth Secretariat, 2000.
- Romp, W. and J. de Haan., "Public Capital and Economic Growth: A Critical Survey," Perspektiven der Wirtschaftspoliti, forthcoming, 2007.
- Romney, M. B., & Steinhart, P. J., Accounting Information Systems (14th ed.), 2018. New York: Pearson.
- Rydeen, J. E., Environmental design: Focusing on human factors. *American School and University*, 75 (12), 158-161, 2003.
- Sanoff, H., School building assessment methods. Washington, DC: National Clearinghouse for Educational Facilities, 2001
- Schwab, K., The Fourth Industrial Revolution: What It Means and How to Respond. Retrieved from https://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-revolution.
- Schwab K. In: The Fourth Industrial Revolution. Geneva, Switzerland: World Economic Forum; 2016.
- Schiuma, G. Arts catalyst of creative organizations for the fourth industrial revolution. J. Open Innov. Technol. Mark. Complex. 2017, 3, 20.

- Sivathanu, B., & Pillai, R., Smart HR 4.0-how industry 4.0 is disrupting HR. Human Resource Management International Digest, 26(4), 7-11, 2018.
- STATsSA. Financial statistics of higher education institutions 2009. Statistical release P9103.1. Pretoria: STATsSA; 2010.
- Stephens, L.J. & Schaben, L.A., The effect of interscholastic sports participation on academic achievement of middle level school activities. *NASSP Bulletin*, 86(630), 34-42, 2002.
- Tongkaw, A., Multi perspective integrations Information and Communication Technologies (ICTs) in higher education in developing countries: case study Thailand. *Procedia-Social and Behavioral Sciences*, 93, 1467-1472, 2013.
- UNESCO. Financing education Investments and returns: Analysis of the world education indicators. Montreal: UIS, OECD; 2003. Available from: http://www.uis.unesco.org/Library/Documents/wei02 en.pdf
- Vinkler P., Correlation between the structure of scientific research, scientometric indicators and GDP in EU and non-EU countries. Scientometrics. 2008; 74:237-254. http://dx.doi.org/10.1007/s11192-008-0215-z.
- Wolf, M., Same as It Ever Was: Why the Techno-optimists Are Wrong. In The Fourth Industrial Revolution. Foreign Affairs, 2015.
- World Economic Forum., The future of jobs: employment, skills and workforce strategy for the fourth industrial revolution. World Economic Forum, Geneva, Switzerland, 2016.
- Wordsworth, P., Lee's Building Maintenance Management, 4th Edition. Oxford. Blackwell Science Ltd, 2001.
- Yun, J.J. Business Model Design Compass: Open Innovation Funnel to Schumpeterian New Combination Business Model Developing Circle; Springer: Cham, Switzerland, 2017.
- Zhou, K., Liu, T., and Zhou, L., Industry 4.0: Towards future industrial opportunities and challenges. In Fuzzy Systems and Knowledge Discovery (FSKD), 2015 12th International Conference on (pp. 2147-2152), 2015, IEEE.

Biographies

Thalente Nkosi is a Master's degree student at the Department of Construction Management and Quantity Surveying, Faculty of Engineering and the Built Environment, University of Johannesburg. Her passion for her profession made her to be a practicing quantity Surveyor in a well-established Project Management Consulting organization in Johannesburg, South Africa.

Ademilade Aboginije holds a Bachelor of Engineering degree in Civil Engineering from the Federal University of Technology Akure, Ondo, Nigeria. He is currently a master's degree student of Construction Management at the department of Construction Management and Quantity Surveying, Faculty of Engineering and the Built Environment, University of Johannesburg, South Africa. Ademilade does research in Construction waste management, Green technology adoption in construction, Green building project delivery, Infrastructure project financing, Circular Economy and Data mining application in construction.

Nokulunga Mashwama currently works as a lecturer at the Department of Construction Management and Quantity Surveying, University of Johannesburg, South Africa. Nokulunga does research in Civil Engineering, Environmental Engineering and Quality Assurance Engineering.

Wellington Thwala is a Professor of Construction Project Management and current Head of Department at the Department of Construction Management and Quantity Surveying, University of Johannesburg, South Africa. He is one of the researchers rated by the National Research Foundation (NRF). He is a Director of the DST NRF SARChi Chair in Sustainable Construction Management and Leadership in the Built Environment and also the Chairman of the Construction Management Foundation Advisory Board. Professor Thwala has varied research interests, including project management, construction management, construction health and safety, engineering design management, economic and social infrastructure delivery, business competitive intelligence and leadership.