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Abstract 

Inventory management in reverse logistics has been receiving increasing attention in recent years. Our 
modelling approach generalizes a whole class of various models that draw attention to different aspects of 
production, inventory, and recovery. A complete solution in the form of a theorem for that general model 
class is provided. Furthermore, the paper illustrates how that theorem can be applied to one of the 
mentioned models from the literature, Jaber and Saadany, 2009. The paper Jaber and Saadany, 2009 
extends along this line of research and assumes that demand for manufactured items is different from that 
for remanufactured (repaired) ones. This assumption results in lost sales situations where there are stock-
out periods for Manufactured and remanufactured items. However, in their paper the authors provide 
solution procedure in the form of algorithm and did not provide the complete explicit solution to this 
complex problem. We provide the solution in this paper.  

Keywords 
Reverse Logistics, Remanufacturing, Lot Sizing 

1. Introduction
In recent years, reverse logistics has received increasing attention from both academia and industry. There is 
increasing recognition that careful management can bring both environmental protection and lower costs: 
environmental and economic considerations have led to manufacturers taking their products back at the end of their 
lifetimes. As a result, the reverse logistics process is now considered as a basis for generating real economic value as 
well as supporting environmental concerns. 
Rogers and Tibben-Lembke, 2009 defined reverse logistics as the process of planning, implementing, and 
controlling the efficient, cost-effective flow of raw materials, in-process inventory, finished goods, and related 
information from the point of consumption to the point of origin for the purpose of recapturing value or proper 
disposal. The integration of forward and reverse supply chains resulted in the origination of the concept of a closed-
loop supply chain. The whole chain can be designed in such a way that it can service both forward and reverse 
processes efficiently. 
A latest actual survey of mathematical inventory models for reverse logistics can be found in Bazan et al., 2016. An 
extensive survey of research related to quantitative modeling for inventory and production planning in a closed-loop 
supply chain was provided by Akc¸alı and C¸etinkaya, 2011. According to Akcaly and Cetinkaya, 2011 inventory 
models are divided into two main categories: deterministic and stochastic, according to the modelling of demand and 
return processes.  
The subject of this paper is deterministic inventory models with constant demand and return. The economic order 
quantity model (EOQ model), which was derived by Ford W. Harris in 1913, became the basis for many reverse 
logistics models because of its simplicity and intelligibility. Shrady, 1967 was the first to apply the EOQ model to 
reverse logistics processes. He introduced an EOQ model with instantaneous production and repair rates. A closed-
form solution was developed. In his work an efficient policy P(m,1) was established, which means that within each 
remanufacturing cycle a number m of remanufacturing batches of equal size are followed by exactly one 
manufacturing batch. This work was extended by Nahmias and Rivera, 1979  and Mabini et al., 1992 
extended 
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Shrady's model to the multi-item case.   Koh et al., 2002 analyzed a model similar to that of Shrady, 1967, but with 
some differences. They considered two types of policies, P(m,1) and P(1,n), under a limited repair capacity, 
where n is the number of manufacturing batches. They examined the cases of a smaller and a larger recovery rate 
compared to the demand rate. 
Teunter, 2001 generalized the results of Schrady by examining different structures of the remanufacturing cycle. He 
considered different types of policies by placing the n manufacturing batches and m recovery batches in different 
orders. 
He concluded that the policy P(m,n),m> 1,n>1 will never be optimal if the above-mentioned m and n are 
simultaneously larger than one, and that only the two policies P(1,n) and P(m,1) are relevant. 
  Choi et al., 2007 generalized the P(m,n) policy of Teunter by considering the ordered sequence of manufacturing 
and remanufacturing batches within the cycle as decision variables. Through sensitivity analysis they found that 
only 0.2\% out of the 8,100,000 tested instances of the model have an optimal solution with both m and n greater 
than one. Liu et al., 2009 generated and solved 60,000 instances and found that only 0.19% of them have an optimal 
solution in P(m,n) with both m and n greater than one. Konstantaras and Papachristos, 2008 extended Teunter’s 
approach and found the exact solutions for the optimal numbers m and n. 
  Richter was the author of a series of papers where he considered an EOQ model with respect to the waste disposal 
problem.  Richter, 1996 proposed an EOQ model that differed from that of Shrady, who assumed a continuous flow 
of used products to the manufacturer. Richter, 1996 assumed a system of two shops: the first shop provided a 
product used by a second shop; the first shop manufactures new products and repairs (in contemporary terms---
remanufactures) products already used by the second shop and collected there according to some rate; other products 
are disposed of according to a disposal rate. At the end of a certain time interval the collected items are brought back 
to the first shop. Richter, 1997 examined the optimal inventory holding policy if the waste disposal (return) rate is a 
decision variable. The result of this study was that the optimal policy has an extremal property: either reuse all items 
without disposal or dispose of all items and produce new products; that is, the policy of the type P(m,n) with m > 1 
and n>1 is never optimal. He also derived a closed-form for the optimal policy parameters. This analysis of the 
repair and waste disposal model was continued in the papers by Richter and Dobos, 1999 and Dobos and Richter, 
2000. 
  Dobos and Richter, 2003  and Dobos and Richter, 2004  studied a production/recycling system with constant 
demand that is satisfied by non-instantaneous production and recycling. They concluded that it is optimal either to 
produce or to recycle all items that are brought back. Dobos and Richter, 2006 extended their previous work by 
considering the quality of the returned items. 
  Saadany and Jaber, 2010  argued that such a pure policy of no waste disposal is technologically infeasible and 
suggested the introduction of a demand function that depends on two decision variables: purchasing price and 
acceptance quality level. 
  Saadany et al., 2012 regarded the assumption that an item can be recovered indefinitely as unrealistic: material 
degrades in the process of recycling and loses some of its mass and quality, thereby making the option of ‘multiple 
recovery’ somewhat infeasible. Saadany et al., 2012  developed a model where an item can be recovered only a 
finite number of times. 
Some authors extended the above-mentioned models to take account of various assumptions. One option is to allow 
for backorders, where some customers are compensated for having to wait for their delayed orders by either a 
reduction in price or some other form of discount, which is a cost incurred by the supplying firm. This results in a 
backorder cost. Konstantaras and Papachristos, 2006 extended the work of Richter, 1996 by allowing for backorders 
in remanufacturing and production while keeping the other assumptions the same.  
In the study of Konstantaras et al., 2010,  which extended the work of Koh et al., 2002, a combined inspection and 
sorting process is introduced with a fixed setup cost and unit variable costs. This study assumes that remanufactured 
and newly purchased products are sold in a primary market whereas refurbished units are sold in a 
secondary market.  
Konstantaras and Scouri, 2010 considered two models: one with no shortages and the other with shortages. Both 
models are considered for the case of variable setup numbers of equal sized batches for the 
production and remanufacturing processes. For these two models, sufficient conditions for the optimal type of 
policy, referring to the parameters of the models, are proposed.   
Saadany and Jaber, 2009 extended the work of Richter, 1996 by assuming that demand for manufactured items is 
different from that for remanufactured (repaired) items. This assumption results in lost sales situations where there 
are stock-out periods for manufactured and remanufactured items; that is, demand for newly manufactured items is 
lost during remanufacturing cycles and vice versa.  
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Hasanov et al., 2012 extended the work of Jaber and Saadany, 2009 for the full-backorder and partial-backorder 
cases, where recovered items (remanufactured or repaired) are perceived by customers to be of lower quality; that is, 
not as good as new items. 
More recent papers which have considered inventory and production planning models with constant demand and 
return on the base of EOQ Guo and Ya, 2015, Bazan et al., 2015. 
Guo and Ya, 2015 analyzed the model of the recycled products which are considered with the minimum quality 
level in manufacturing/remanufacturing system. In this model, a constant demand is satisfied by manufacturing raw 
materials and remanufacturing recycled products which are up to the quality level. 
Bazan et al., 2015 consider energy used for manufacturing and remanufacturing as well as greenhouse gas emissions 
from manufacturing, remanufacturing and transportation activities with emissions penalty tax as per The European 
Union Emissions Trading System. The objective of the model is to develop a total cost function that is minimized by 
determining the following: the manufacturing batch size per cycle, the number of manufacturing batches per cycle, 
the number of remanufacturing batches per cycle, and the number of times an item may be remanufactured. 
However, for some of the above-mentioned models, so far no complete solutions have been presented. In the paper 
of Saadany and Jaber, 2008 the extended EOQ production, repair and waste disposal model of Richter, 1996 was 
modified to show that ignoring the first time interval results in an unnecessary residual inventory and consequently 
an over estimation of the holding costs. They also introduced switching costs in order to take into account 
production losses, deterioration in quality or additional labour. When shifting from producing (performing) one 
product (job) to another in the same facility, the facility may incur additional costs, referred to as switching costs, 
when alternating between production and repair runs. The special case of even numbers m and n was studied and 

conditions were provided to decide which of two policies P(m,n) and )( ,
2 2

P m n
 is preferable, but a general optimal 

policy for the problem was not presented. 
Our modeling approach generalizes a whole class of various other models that draw attention to different aspects of 
production, inventory, and recovery. A complete solution in the form of a theorem for that general model class is 
provided. Furthermore, the paper illustrates how that theorem can be applied to one of the mentioned models from 
the literature. 
Our paper is organized in the following way: in the second section, the solution of the general model is presented; in 
the third section the production, remanufacture and waste disposal model with lost sales (Jaber and Saadany, 2009) 
and additionally switching costs is solved using general approach and the forth section contains our conclusions. 

2. Solution of the general model

The general production and recovery model was considered in the working paper Kozlovskaya et al., 2017.Consider 
the following two-dimensional nonlinear integer optimization problem:  
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By analysing the first partial derivatives, we can prove the following lemma: 

Lemma. If 0, 1, 2, ,i i nx > = … , there are n curves of local minima (2) with respect to jx : 
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Then the optimal solution for the continuous problem (1) is provided by the following theorem. 

Theorem. The optimal solution to the problem (1) has the following structure depending on the value of the 
parameters , ( )i iA B j :  

If 1, 1,2, ,i i nA ≥ = … , then , 1, 2, , .i ix A i n= = …  
If 1 1A < , then consider 2 3(1), (2),... , (j 1), , ( 1)njB B BB n… − … − ; if (j 1) 1jB − <  and 1(j) 1jB + ≥ then 

1,1, 1, , , ( ), , .i i ii j x B jx i nj= = … = …= +  
If ( 1) 1n nB − < , then 1, 1, , .i ix n= = …  

In the paper Kozlovskaya et al., 2017, the problem of Saadany and Jaber, 2008 was solved by using this approach. 
The theorem can be used for the solution of more complicated models, with more activitites and more stock points. 
More detailed analysis can be found in working paper Kozlovskaya et al., 2015. In the next section, the application 
of the theorem will be demonstrated for the model Jaber and Saadany, 2009.  

3. Solution of the Production,Remanufacture and Waste Disposal Model with Lost Sales
In this section, the above discussed methodology is applied to the model Jaber and Saadany, 2009. 
3.1. Assumptions 
1. A single product case with two different qualities.

2. Production and recovery rates are instantaneous.
3. Demand rates for produced and remanufactured items are known, constant and of different values.
4. Collection rates for previously produced and remanufactured items are known, constant and of different values.
5. Lead time is assumed to be zero.
6. Inventory stock-out occurs with unsatisfied demand (newly produced items or used/repaired items) lost.
7. Unlimited storage capacity is available.
8. Planning horizon is infinite.

3.2. Notations 
 Decision variables:  
n   -  number of production cycles in an interval of length T . 
m   -  number of remanufacturing cycles in an interval of length T . 
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pγ   -  collection percentage of available returns of newly produced items( 0 < < 1pγ ). 

rγ   -  collection percentage of available returns of previously remanufactured items( 0 < < 1rγ ). 
Input parameters: 

pD   -  demand rate for newly produced items(units/ unit of time). 

rD   -  demand rate for remanufactured items(units/ unit of time),where rD  is not necessarily equal to pD
 P    -  total switching cost for a production and a remanufacturing cycle ($). 

pS -  setup cost for a production cycle ($).

rS -  setup cost for a remanufacturing cycle($).

ph -  holding cost per unit per unit of time of a produced item($/unit/unitoftime).

rh -  holding cost per unit per unit of time of a remanufactured item($/unit/unitoftime).

uh -  holding cost per unit per unit of time of a used item($/unit/unitoftime).

pc -  cost per unit of a lost demand for a produced item($/unit).

rc   -  cost per unit of a lost demand for a remanufactured item($/unit). 

pβ   -  percentage of available returns from the primary market for produced items. 

rβ - percentage of available returns from the secondary market for remanufactured items ( 0 < < 1r pβ β≤ ). Note 
that 1 rβ−  and 1 pβ−  are the waste disposal rates.
Decision variables dependent parameters 

2x   -  lot size quantity(in units)to be remanufactured/ repaired in an interval of length T . 

1x   -  lot size quantity(in units)to be produced in an interval of length T . 

pT   -  length of a production interval(units of time), where 1= /p pT x D . 

Figure 1. Material flow for a production and remanufacture system. 

3.4. Problem statement 
The paper Jaber and Saadany, 2009 considers the Richter's model (Richter, 1996) except for the assumption that 
remanufactured(repaired) items are not perceived by customers to be of the same quality as newly produced items. 
There are therefore a primary market and a secondary market for produced and remanufactured items respectively. 
In an interval of length T , there are two sub-intervals representing remanufacturing and production of lengths rT
and pT , respectively. Each repair interval consists of m  remanufactured batches of size 2 /x m  each, while a 
production interval consists of n  production batches of size 1/x n  each. The total remanufactured and production 
quantities per interval T  are determined respectively as 2 = r rx D T  and 1 = p px D T . Used items are collected at rates 

r rγ β  over rT  and p pγ β  over pT  accumulating 2 = =r r r r r r p p p px D T D T D Tγ β γ β+  units. Accordingly, 

1 2/ = (1 ) / ( )r r p px x γ β γ β− , where 1 2/x x  is the ratio of produced to remanufactured units. Material flow for a 
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production and remanufacture system is illustrated in Fig.1. The paper Jaber and Saadany, 2009 considers two cases 
for lost sales. The first case assumes that demand for newly manufactured (produced)items are lost over rT and that 
demand for remanufactured items are lost over pT . This case is referred to as the total lost sales case. The second 
case assumes that it may be possible to entice some customers to settle for are manufactured (manufactured) item at 
a cost, this case is referred to as the partial lost sales case. Two mathematical models are developed accordingly. In 
the paper Jaber and Saadany, 2009 the algorithm for solution was proposed for solution of this model, but strict 
formulas weren't derived. Consider the first model – total lost sales case. The behavior of inventory for 
remanufactured produced and collected used items over interval T is represented in Fig.2. The mathematical 
programming problem was derived Jaber and Saadany, 2009:  

Figure 2. The behavior of inventory for remanufactured produced and collected used items over interval T. 
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3.5. Problem solution 
 The minimum value of the function (6) could be found using Theorem. We obtain the coefficients of the model in 
the following form: 
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We have 1 2 0A A= =  . From the theorem follows that the solution has the form: (m,1), if 1 0 2
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In this section, we consider more general cases of policies, taking into account switching costs. When shifting from 
producing (performing) one product (job) to another in the same facility, the facility may incur additional costs, 
referred to as switching costs, when alternating between production and repair runs. Suppose that switching costs are 
positive: 0P >  . Then the mathematical programming problem (6) has the following form: 

min ( , ) = (2 ( ) ( , ) ),
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m n

ψ + + +
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with 0b P=  and 1 20, 0A A≠ ≠ . 
Without loss of generality let 1 20 .A A< <  In this case the solution can have different structure. If 1 21 AA< < , the 

solution has the form (m,n), where 1 2[ ], [ ]m A n A= = . If 1 21A A≤ < , then consider 2 0 1
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2 (1) 1B > , the solution has the form (1,n), where 2[ ](1)Bn = , If 2 (1) 1B ≤  , the solution has the form (1,1). The 

case 2 10 AA< <  can be solved by the same way. 
The impact of the switching cost becomes apparent for sufficiently high values. In this case the optimal numbers (m, 
n) can both be greater than one. It is illustrated in the next section.
3.6.  Numerical analysis
The input parameters for numerical analysis are represented in the Table 1. Each of the model parameters has been
set to vary in a range, which are represented in the Table 1.

Table 1. The input parameters for the numerical analysis. 
pD rD pS rS  ph  rh uh pc  rc pβ rβ pγ rγ P

  Max 1000 1000  500  500  100 100 100 100 100 0,8 0,8 0,99 0,99 500 
Min 100 100 5  5 1 1 1 10 10 0,1 0,1 0,01 0,01 5 

The sets of parameters ( , , , , , , , , , , , , , )p r p r p r u p r p r p rD D S S h h h c c Pβ β γ γ  for 10000 examples were randomly 
generated. When generating the ph , rh , uh , the constraint > >p r uh h h  was respected. When generating the pc  and 

rc , the constraint >p rc c  was respected. The results confirmed that the (1, )P n  is optimal over 3307 examples 
(50,8%), (1,1)P  over 3128(48,1%), ( ,1)P m  over 43 (0,7%), ( , )P m n  over 30(0,5%); some more results are 
displayed in Table 2. 

Table 2. Results of the numerical analysis. 
   Switching Cost ( , )P n m (1, )P m  ( ,1)P n  (1,1)P  Total 

= 0P  0 339  7298  2363  10000 
> 0P   2373 262 6672  693 10000 
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4. Conclusion
Faster generation of waste leads to rise of collecting and remanufacturing cores to extend their useable lives and thus 
reduce waste. Economical incentives enticed and later governmental legislations compelled companies to initiate 
product recovery programs. European waste legislation currently gives a global framework for the implementation 
of extended producer responsibility in Europe. Inventory and production planning focuses on the effective 
utilization of existing inventories and production resources, therefore managing inventory in reverse logistics 
represents an important problem. The focus of this paper is on the mathematical modeling of inventory with return 
flows that were developed on the base EOQ. The general objective of the inventory management models is to 
control product orders, inventory levels, and recovery processes to minimize total costs. 
Our modeling approach generalizes a whole class of various models that draw attention to different aspects of 
production, inventory, and recovery. A complete solution in the form of a theorem for that general model class is 
provided. Furthermore, the paper illustrates how that theorem can be applied to one of the mentioned models from 
the literature, Jaber and Saadany, 2009. In their paper the authors provide solution procedure in the form of 
algorithm and did not provide the complete explicit solution to this complex problem. We provide the solution in 
this paper. We found the optimal policy P(m; n) for the problem, it can have a different structure depending on the 
value of the parameters. The impact of the switching cost becomes apparent for sufficiently high values. In this case 
the optimal numbers (m, n) can both be greater than one. This was illustrated by the numerical analysis. 
The consideration of the government regulations related to extend producer responsibility instruments such as 
minimum recovery target and disposal fee is the future direction of this research. A legislative environment will be 
considered, where the government requires the producers to collect and recover at least a certain percentage of their 
sales and imposes a disposal fee on each product not recovered up to this quota  
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