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Abstract 

 
In this article, the intricacies involved in the maintenance of the industrial repairable systems are analyzed. Based on 
the practical requirement, the mathematical models for repairable system maintenance which are using point process 
theory are listed and reviewed. The available estimation, inference and prediction methodologies are also listed. The 
future issues which are to be addressed in the mathematical modeling for maintenance are also pointed out. 
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1. Introduction 
In this highly technical modern world, the society demands the most reliable and quality products in every aspect of 
life. To meet this demand the production industries dependent on the complex industrial equipments which are 
capable of high speed and continual production capacity. In this context, the maintenance activities for these 
complex industrial equipments or systems not only ensure the timely delivery for profits in the business, preventing 
environmental hazards and safety hazards.  The system which undergoes the aforementioned maintenance activities 
are referred in technical literature as maintained systems or repairable systems. These repairable systems are defined 
as, a system which after failing to perform one or more of its function satisfactorily, can be restored to fully 
satisfactory performance by any method other than replacement of the entire system , Ascher and Feingold [1]. 
Large number of technical papers and many books are published in the field of maintenance modeling for repairable 
system. Most of these developed models actually never applied in practical maintenance activities. Ascher and 
Feingold [1], Scarf [2] states that still the maintenance policy managers and engineers takes the decisions 
heuristically using their engineering back ground and common sense. This is because of the unrealistic assumptions 
of the theoretical models which do not suit the practical realistic situation of the industries. As stated by Guo et al. 
[3] the models developed for maintenance should be efficient, reflective of the situation and good approximating 
tools. And hence these mathematical models should incorporate the elements of the environment in which operation 
and maintenance takes place, failure causes etc.  As per Kumar and Liyanage [5] if one could formulate a concise 
statement on the role of maintenance, it is primarily to reduce business risks on the continuous basis in cost –
effective manner. All these statements in research literature leads to the development of maintenance models which 
can be used to plan for the spares, resources and replacement strategies which in turn help to reduce the cost of the 
production activities, and also to reduce safety and environmental hazards. 
 
2. Industrial Maintenance – An Overview 
With proliferation of line or mass production industries in late 1940s the concept of maintenance has changed from 
simple tasks of maintenance like lubrication, bolt tightening etc and Breakdown maintenance, to the more 
sophisticated preventive maintenance (PM) activities which are aimed to prevent the equipment failures. Though the 
preventive maintenance concepts reduced the failure rates of the equipments, these concepts are having many 
demerits. The excess maintenance, replacement of parts / components which are in good condition, disturbance of 
good machine alignment in the name of maintenance tasks are some of the draw backs of preventive maintenance 
concept. The aforementioned drawbacks of the PM tasks led to the new concepts like predictive maintenance, 
condition based maintenance (CBM) and reliability centered maintenance (RCM). All the Maintenance concepts and 
policies are aimed at one objective that is minimizing the unplanned downtime. Minimizing unplanned downtime in 
turn having many goals, such as business profits, reduction in safety and environmental hazards etc...  To achieve 
these goals the maintenance managers should plan for the optimal policies for maintenance using techniques of PM, 
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CBM, RCM etc... The Planning for getting resources and spares for the maintenance is also having its strategic 
importance in cost reduction. As stated by Syamsundar and Naikan [6], there are several fundamental questions 
regarding the failures, maintenance policy, business goals etc. and their answers will help maintenance policy 
makers of particular industries to decide the suitable and effective tasks in their maintenance policy. Ascher and 
Feingold [1] listed some very important factors in their literature, which are considered to be the influential in the 
failure process and also influential in subsequent maintenance policy framing. All the aforementioned discussion is 
leading to the research and development of tools and models which will help to deliver the optimal solutions to the 
challenges of maintenance. 
 
3. Different Approaches in Mathematical Modeling for Maintenance 
The maintenance modeling of industrial maintained systems which are also referred as repairable systems are 
modeled traditionally using their failure times. The failure time of a repairable system is a random (uncertain) 
variable, and in a continuum (here it is a time line) the collection of this random variable form a stochastic process. 
There have been many approaches used in the research literature to mathematically model the aforementioned 
stochastic process of failure times. There are more than a thousand research articles available using the semi-
Markhov and Markhov process for maintenance modeling. Some of the other commonly used stochastic process 
models are Renewal process, Non-Homogenous Poisson process (NHPP), and Homogenous Poisson process (HPP). 
The renewal process models are based on a strong assumption that the system is brought to the condition of a new 
system, after it was repaired for failure i.e. the maximum possible repair, also known as maximal repair. The 
drawback of this model is that the assumption made is not practically possible in most of the cases. In contrast to the 
renewal process, the NHPP models which look at the trend of the failures in a monotonous increasing or decreasing 
trends. Here these models use the concept of minimal repair which represents the repair as minimum as possible to 
put the system back in to the function. This is also known as minimal repair models. The afore mentioned models 
are discussed in detail by Ascher and Feingold [1], Rigdon and Basu [7] for renewal process and Poisson process, 
Cox [8] for a comprehensive analysis of renewal process, and Birolini [10] for the Markhov models for repairable 
systems. 
 
4.  Stochastic Point Process Models 
A stochastic point process model is explained as occurrence of highly localized events that are randomly distributed 
in a continuum, Ascher and Feingold [1]. Here in the context of repairable systems maintenance modeling the 
localized events are taken as failures of the system and continuum as the time. In this point process the number of 
failures in the time interval 0 to t is denoted by N(t) which is a random variable. The N(t) can be called as the count 

process. An intensity function ( )−t
Ht |λ  of the count process N(t) is a stochastic process which is used to model 

and study the failure in repairable system. It is given by, 
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Where −t
H  denotes the data available prior to time t and also said as the history of failure process through time t. 

Here the assumption we make is that there is a zero probability for the occurrences of simultaneous failures. The 

intensity function ( )−t
Ht |λ  which is also called as the complete intensity function or conditional intensity process 

forms the comprehensive basis for modeling the failure events for maintained systems. Here we use the base line 

intensity function ( )tλ0
, which is the hazard function of the time to the first failure, in describing models by means 

of their conditional intensity function( )−t
Ht |λ . 

 
4.  Models with Repair Effects 
4.1.1. Basic Models: 
The basic models for the repairable systems are renewal process, NHPP and HPP; these can be specified by their 
conditional intensity functions. These are most common and simple models. In the renewal process, the conditional 
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intensity function depends on the prior data (−tH ) through time t, the time since the most recent failures (i.e. the 

Backward recurrence time)  

( )−t
Ht |λ = )(

)(0 −−
tN

Ttλ . 

The renewal process is modeled with the time between failures identically and independently distributed. The 
distributions which are commonly used are exponential, gamma, Weibull, log-normal etc. In the NHPP models the 
intensity function is the non-constant one. The conditional intensity function for this model is the function of 
chronological age of the system. 

( )−t
Ht |λ  )(0 tλ=  

and When the conditional intensity function of NHPP takes the following form, then we call it as Power law process. 

( )−t
Ht |λ  1. −= βαβ t  

For the log-linear process the conditional intensity function will be of the following form 

( )−t
Ht |λ  ).exp( tβα +=  

When the time between failures of a renewal process is exponentially distributed and the intensity function of NHPP 
is a constant, then both the process will give rise to a special case called as HPP. The conditional intensity function 
of HPP is given by, 

( ) 0| λλ =−tHt  

 
4.1.2. Extension of the basic models 
With extension and generalization of NHPP and renewal process models, Lindqvist [11] proposed a new model 
termed as trend renewal process (TRP), whose conditional intensity function is given by, 

( )−t
Ht |λ  = ( ) ( )( )( ) ( )tTtz

tN 000 λ−Λ−Λ  

The parametric inference of the TRP model is studied by Elvebakk et al. [14]. Kristov [12] extended the NHPP 
model into non- homogenous renewal process (NHRP). In this model the hazard function of the renewal process has 
taken as its intensity function and inter-failure times replaced with times to failure. The two NHRPs based on log-
normal and Weibull are postulated to provide a good fit to the practical trends observed. Berman [13] modeled an 

extension of NHPP with a new concept that each system experiences the shocks with NHPP intensity ( )tλ  and the 

failure occurs only at the Kth shock. If K<1 after repair then the system is said to be deteriorating and K>1 after 
repair then the system is termed as improving. This model is termed as Inhomogeneous gamma model. A special 
form of inhomogeneous gamma model termed as modulated gamma process is also proposed by Berman [13] with 
the conditional intensity function  

( )−t
Ht |λ  = ( )( )tzβρ ′exp  

The modulated gamma process discussed above is extended for cyclic trend of fixed frequency model whose 

conditional intensity function is given by ( )−t
Ht |λ  = ( ) ( )( )tt ωβωβρ sincosexp 21 + . Here ω  represents the 

periodicity of cyclic trend and β1 and β2 are the regression coefficients of the covariates. Kijima [15] introduced a 
model for the concept of age recovery or age loss. He incorporated the effect of imperfect repair using the concept of 

virtual age. The model is represented by, ( )−t
Ht |λ  = ( ))(0 tελ=    where ( )tε  is the effective age of the unit. 

Doyen and Gaudoin [16] proposed two models, arithmetic reduction of age (ARA) and arithmetic reduction of 
intensity (ARI) models. These models more accurately represent the conditional distribution of inter-failure times. 
The ARA Model is represented by  
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4.2. Models which considers other conditions 
In the repairable system maintenance there always exist some special conditions apart from the regular ones. To 
reflect these special conditions in the model building, some of the basic models are extended and synthesized to get 
more practical models with good fit for the available data. The branching Poisson process (BPP), generalized 
Weibull renewal process (GWRP), bounded intensity process (BIP), The superimposed power law process and 
superimposed renewal process are the some extended models of Renewal process, HPP, and NHPP. In some 
maintained systems because of the inadequate repair after failure (Primary failure), there will be subsequent failure 
(subsidiary failure) due to same reason as primary failures, the BPP model account for this phenomenon. The BPP is 
the superimposition of primary and subsidiary failure series, with the assumption that both the failure types are 
indistinguishable. Ascher and Feingold [1] and Hansen and Ascher [17] dealt the BPP model in their publications. 
To Model the non-monotonic failure occurrences of different types, various generalization methods of Weibull 
distribution is published by Murthy et al. [18] and more recently by Pham and Lai [19]. In the repairable system as 
the age increases the failures also increases, with the subsequent repair action and substitution of parts in the system, 
the system as a whole consists of parts with non-uniform ages which will lead to the constant failure intensity. To 
model such system Pulcini [20] proposed a BIP Model, which initially evolves as power law process with the beta 
value of 2 and converges to HPP asymptotically, with the conditional intensity function of  

( )−t
Ht |λ  = 













−− βα texp1  

Pulcini [21] also proposed a model to analyze the complex repairable system which can exhibit the bathtub curve 
behavior of the intensity function. In this model superimposition of two power law process are done to analyze the 
failure pattern. This model is termed as SPLP model with conditional intensity function of 

( )−t
Ht |λ  )(1 tλ= + )(2 tλ  
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As per Ascher and Feingold [1] the SRP models are formed by superimposing the n independent renewal process. 
This model can be used to analyze the system with mix of components each of which are represented by renewal 
process. To encounter the other practical difficulties in modeling for the maintained system, discrete processes other 
than Poisson process also used. One such model, Geometric Process (GP) model proposed by Leung and Fong [22] 
to represent the wear or age which in turn causes the decrease in operating times due to the increase in repair time 
(due to rectification of the accumulated wear and age related problem). Yang et al. [23] presented the maximum 
likelihood function for this GP model. 
 
4.3. Proportional Intensity Models 
The failure times of maintained systems depends on many factors such as operating environment, prior history of 
repairs and maintenance, components, material and design of the system, Kumar [24]. Some factors are constant 
over the period of time and some are time dependent. With the basis of regression model proposed by Cox [9], 
taking some of the factors as covariates and concomitant variables, two models with time varying covariates has 
been proposed.  Time varying covariates given by 

( )−t
Ht |λ  = ( ) ( )( )tZft .0 γλ ′  

Time invariant covariates given by 

( )−t
Ht |λ  = ( ) ( )Zft .0 γλ ′  

Where, ( )tλ0
 is the baseline intensity function, γ ′  regression coefficient of time varying covariates, Z(t) time 

varying covariates. The above models are called as proportional intensity models. In the above model the covariates 
strength can make the baseline intensity function to increase or decrease. The link function f(.) may take the form of 
exponential, log or logistic. For the systems having general repairs, based on the prior repair history a proportional 
intensity model with log-linear baseline intensity has been proposed by Guo et al. [4]. This model considers 
simultaneously the time trends and repair effects, with the assumption of cumulative number of failure captures the 
age, use behavior and repair history of the system. It is represented by 

       ( )−t
Ht |λ  = ( ) ( )( )tZft .0 γλ ′  

= ( ) ( )( )−t
NEft .0 γλ  
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For the imperfect repair and accumulating number of failures with proportional intensity Pena and Hollander [28] 

proposed a general class of models ( )−t
Ht |λ  = ( )( ) ( ) ( )( )( )tZftNt γρελ ′−

0 . Combining the preventive 

maintenance effects and variables of prediction a model termed as generalized proportional intensities model 
(GPIM) has been proposed by Percy and Alkali [26]. They incorporated intensity scaling factors for preventive and 

corrective maintenance. It is represented as, ( )−t
Ht |λ  = ( )t0λ  {
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} exp (γ’ Z(t)). Where r i and sj 

are intensity scaling factor for preventive and corrective maintenance respectively, M(t) and N(t) represents total 
number of preventive and corrective maintenance actions respectively. 
 
4.4 Marked Point Process models 
In the actual industrial environment with multiple systems, the following situations may arise many times. Afore 
discussed mathematical models (also known as univariate point process) may not do justice to reflect the practical 
difficulties. The situations may be the systems are similar or dissimilar with heterogeneity, multiple failures and 
failures of same or different types, varying effects with various failures and variety of maintenance activities to 
tackle various failures. To handle the aforementioned conditions and to reflect the originality of the situation, we can 
use the multivariate point process. A multivariate point process is a collection of k univariate point processes, which 
may of course be dependent on each other. While another method of handling failures with multi dimensions such as 
above mentioned is that, the basic failure events should be included in a univariate point process with other features 
placed as marks at each failure event forming a random variable (a single mark) or a random vector (multiple marks) 
leading to a marked point process. Here marks represent number of failures, maintenance types required for 
particular failure, degradation level of a system etc. To deal with the multiple systems and heterogeneity between 
them, various models have been developed. The heterogeneous trend renewal process (HTRP), negative binomial 
process (NBP) and other general class of process are some of the models developed to deal the aforementioned 
situations. 
 
Bain and Wright [26] applied the NBP model to deal with multiple maintained systems, which are having different 
intensity though they are similar in nature. These different intensities reflects the heterogeneity between the systems 
and to reflect this heterogeneity, the Poisson parameterλ  has been considered as the random variable which is 
following gamma distribution and a compound Poisson model has been developed. Bain and Wright [26] used 
methods of moments and Savani and Zhigljavsky [27] used generalized moment based estimates for the estimation 
of the parameters of the NBP model. Some unobserved heterogeneity among the multiple systems has been dealt by 
Elvebakk et al. [14] in the HTRP model, where unobserved heterogeneity is introduced as a multiplicative factor 
which is a random variable depends on the intensity. The imperfect repair and proportional intensities, and 
accumulating number of failures are reflected in the general class model proposed by Pena and Hollander [28]. In 
this model, the heterogeneity is represented by a multiplicative factor Wi working on the intensity and is represented 
by 

( )−t
Ht |λ  = ( )( ) ( ) ( )( )( )tZftNtWi γρελ ′−

0  

Pena et al. [30] and Pena et al. [29] have given the non-parametric inference and semi-parametric inference 
respectively to the above models.  According to Lehmann [31], whenever a system undergoes a repair after each 
failure, the level of degradation of the system is pushed back to a point which lies between the levels of new system 
and the system just before the failure. In this regard a model for degradation of maintained system is developed 
based on the marked point process. Here, the failure events and the inspection time are taken as events, and the 
degradation level, repair levels, etc. is taken as marks. No practical application was shown in the literature for this 
model. To asses the failure rate of the competing modes of reliability data base Cooke [32, 33] proposed models for 
independent competing risks and for competing risks with dependency. Bunea et al. [34, 35] also proposed many 
models for competing risks and also proposed methods for selecting model based on various factors of models. For a 
system which fails due to one of the series of independently acting competing failure mechanism, and the system 
also have imperfect repair, moreover the system is also under the preventive or CBM based maintenance activities, 
Langseth and Lindqvist [36] proposed an intensity proportional repair alert model. The model assumption is that the 
conditional density of CBM is proportional to the intensity of the imminent failure process. The repair alert function 
of the model, proposed a metric to test the level of alertness of the maintenance group of industry to check 
impending failures by applying CBM measures. Also the Langseth and Lindqvist [37], Lindqvist et al. [38] 
proposed, tools to test the intensity proportional assumption, the use power law process for repair alert function, 
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respectively. For complex repairable system, Doyen and Gaudoin [39] proposed a general frame work for modeling 
the process of corrective and CBM preventive maintenance along with imperfect repair models for the failure 
process. Using the Weiner process Lindqvist and Skogrud [40] proposed idea of modeling a degradation process for 
maintained system. 
 
4.5. Alternate time scale models 
Most of the stochastic process models use the calendar or Global time, alternatively, some of the models has to be 
built upon the alternative time scales to suit the practical applicability. For example, the number of miles the 
automobile has driven can be used as the time scale. In the case of aircraft the number of flying hours, take-offs, 
landings, time since the last overhaul of aircraft engine may be taken as the alternate time scale models. External and 
environmental factors such as temperature, stresses, operating speed can also be taken as the alternate scale to model 
the failure process. Depending on the stochastic process and its application, single time scale or multiple scales 
leading to mixed scale can be used to model the failure procedure. A cumulative hazard rate which depends on the 
environmental changes that affect the failure has been taken as the time scale, Ozekici [41], developed a model with 
the concept of intrinsic age of the system. By deploying the local time (time since the last failure) and global time 
(age of the equipment) together in the proportional intensity model, Percy and Kobbacy [42] proposed a model for 
failure process. Again, in the proportional intensity model by taking the loads, usage, number of stops and starts (all 
are external factors) as covariates, Duchesne and Lawless [43] postulated alternate time scales for modeling of 
failure, for which the conditional intensity function is given by, 

( )−t
Ht |λ  = ( )( )tZt,0λ  

Where the base line intensity (λ0) is the function of calendar time and alternative time scales are based on the 
external influences of environment.  
 
For the external environmental factors which affect the failure process, an accelerated time assumption is made and 
the conditional intensity function is given with a multiplicative factor which accelerates the time scales and it is 
given by 

( )−t
Ht |λ  = ( )( )( )ttZγλ ′exp0  

This accelerated time with respect to failure modeling for the industrial maintained systems are studied by Guida 
and Giorgio [44], Guerin et al. [45], Yun and Kim [46] and Yun et al. [47]. Gertsbakh and Kordonsky [48] in their 
research literature suggested a heuristic principle that the best time scale was the one which provided the smallest 
coefficient variation. To find out the optimum inspection interval and replacement strategy for the subsystems in a 
system a “repair and maintenance indicator (RMI)” was proposed by Lugtigheid et al. [49]. This RMI is the linear 
combination of weighted subsystem ages which replaces the time scale in the baseline intensity function of a 
proportional intensity model. 

RMI(t) = ( )∑
=

P

i
ii ts

1

ω  

Where ωi is the weight of the i th subsystem and si(t) is the accumulated operating time of the ith subsystem at time t. 
The conditional intensity function with RMI(t) is given by 

( )−t
Ht |λ  = ( )( ) ( )( )tZtRMI γλ ′exp0  

 
5.  Inference for Point Process Models 
For the available models which are mentioned above (in the section 4), for their effective utilization, the proper tools 
are required to apply this models to the data generated by the maintenance process. After the proposal of a model, 
we have to apply techniques to estimate the unknown parameters of the model and using these parameters the fit of 
the model to the available data set is to be checked. Further, the required quantities of interest for the maintenance to 
be predicted using the models. After the aforementioned important steps, then the model can be utilized to solve the 
industrial maintenance problem. The methods for inferring the parameters of the models are listed as, Method of 
Maximum likelihood, Methods of moments, Method of least square and Expectation-Maximization (EM) algorithm. 
Among these, the method of maximum likelihood is the generally used estimation technique, while others are used 
for specific cases and models. Testing of the model for its fit for a particular data set is done in many ways. The 
simplest one is the graphical fit, where estimated and observed failures are plotted against time and observed 
visually. Check of fit can also be obtained by calculating the sum of squares of the distance between the expected 
and observed values, where the least sum of the square will give best fit. Similarly highest maximum likelihood 
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value of maximum likelihood estimation gives the best fit. Some more methods for goodness-of-fit is also published 
in various research literatures, D’Agostino and Stephens [50] for various renewal processes, Ascher and Feingold 
[1] and Rigdon and Basu [7] for various basic models, Kvaloy and Lindqvist [51,52], Vaurio [53], Kvaloy et al. [54] 
and Lindqvist [55] provided goodness-of-fit tests for point process models for repairable systems. For multiple 
systems and heterogeneity, the goodness-of –fit tests are given by Kvaloy [56}, Kvaloy and Lindqvist [51], and 
Rigdon and Basu [7]. After the estimation and testing, the models can be used to predict the future quantities of 
interest for maintenance. Few following relationships can be utilized to estimate these quantities of interest. 
Expected numbers of failures are calculated using the relation 

( ) ( )( ) ( ) )|(|
0
∫ −− =Λ=Λ
t

yt
dyHyEHtEt tλ  

in the time interval [0, t]. 
Conditional reliability of the system is given by, 
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where i is the ith segment of failure process after the (i-1)th failure. 
Conditional failure distribution is given by 
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6. Future Requirements in Modeling for Maintenance 
After reviewing the models which are developed in last few decades, it is observed that the following few features 
should be incorporated so that modeling can be more effective and relevant to the practical industrial needs. The 
models should reflect the practical features of maintenance on the sustained basis, models should accommodate the 
environmental changes and parameter changes due to increase in data set, which leads to multi-phase models. 
Models should be developed for dealing with multiple failures and common cause failures. Models which are 
dealing with CBM is to be given more attention as little work has been done in that area. Also the further work has 
to be done on models with repair consideration, with small data sets and with censored data sets. 
 
7.  Conclusions 
To avoid the failure or in unavoidable circumstances to increase the time between failures of industrial maintained 
systems, the maintenance policy makers try to estimate the magnitudes of factors which are governing the 
maintenance. Identification and monitoring of crucial parameters for failure and planning the maintenance activities 
based on this are required for the effective maintenance of repairable systems. From the business angle the planning 
for the availability of the system at crucial time (like at peak seasonal demands) by identifying the critical 
maintenance parameters of the system based on the estimated parameters is another advantage of the mathematical 
modeling of the repairable systems. From the equipment manufacturer’s point of view the identification of crucial 
parameters governing the failure will certainly help to improve the equipment quality at design stage itself and later 
in manufacturing (of equipment) stage also. This will definitely improve the reliability of the system. In this paper 
we attempted to review the models which are available in the research literatures of last few decades with an eye on 
the practical requirements of repairable system of the modern complex industries, to deploy appropriate model for 
effective maintenance planning and implementation. 
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