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Abstract 
 
This paper considers a dyadic supply chain with uncertain supplier. Both retailer and supplier use continuous review 
policy. The supplier is randomly available for supplying the retailer. The retailer faces Poisson demands. In this 
system, lead time is a random variable consists of a constant transportation time plus a random delay occurs due to 
availability of stock at the supplier. This paper considers both the integrity and the uncertainty in the above supply 
chain. We derive a good approximation for the total cost function of described system, as weighted mean costs of 
the one-for-one ordering policy. Finally, using simulation studies, we show that absolute errors are significantly 
ignorable.  
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1. Introduction 
This paper investigates an integrated uncertain supply chain. An uncertain supply chain models are aimed to reach 
mathematical models of supply chain, considering uncertainty in supply, demand, lead time and the other parameters 
of supply chain. Up to now, the most of existing literature on the supply chain management has some major 
assumptions, to simplify analysis of problems. One of these assumptions that frequently used in the literature is 
reliable supplier. Gurler and Parlar state that this assumption is one of the unstated assumptions in almost every 
inventory model [1]. This assumption indicates that supplier is continuously available at any time an order is placed. 
There are several reasons for considering uncertainty on the supply, as are mentioned in the literature, equipment 
breaks, material shortages, strikes, and political crises to name but a few. A review of relevant literature indicates 
that existing models in uncertain supply literature can be classified into two main category, production-storage and 
inventory models [2]. The model presented in this paper belongs to second category. 
 
Some early studies in inventory models with uncertain supplier use Economic Order Quantity (EOQ) assumptions. 
These works analyze problems under various characterization probability distributions that describing the ON/OFF 
periods [2]. In general, supplier could be considered to have available state (ON) or unavailable state (OFF). 
Examples of papers belong to EOQ category are Parlar and Berkin [3], Weiss and Rosenthal [4], Parlar and Perry 
[5], Parlar and Perry [6], Gurler and Parlar [1] and Parlar [7]. In these studies demand is deterministic, lead time is 
zero and replenishments are instantaneous. The EOQ assumptions provide some bases for earlier studies. In the late 
of 1990s and after that, some researchers try to relax EOQ assumptions. A number of studies including Parlar et 
al.[8], Arreola-Risa and DeCroix[9], and Ozekici and Parlar[10] considered the problem in the context of inventory 
systems with random demand, zero lead time and unreliable suppliers. In 2006, Mohebbi and Hao [11] indicate that 
analytical treatment of inventory systems with random supply interruption and non-zero lead time remains largely 
unexplored and there are just a few existing models in the inventory control literature on this area. 
 
Parlar [12] considered an unreliable supplier. He used continuous review inventory system with stochastic demand, 
random lead time and backorder. He extended Hadly and Within [13] approximation for understudy problem with 
assumption that at any time at most one order can be outstanding. Gupta [14] presented an exact cost minimization 
model for a continuous review inventory system with unit-sized Poisson demand, constant lead time and lost sales in 
which the supplier’s ON and OFF periods are exponentially distributed and never more than a single order is 
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outstanding at any time. In 2003, Mohebbi [15] develops an exact cost-minimization model for a lost sales, 
continuous review inventory system with compound Poisson demand and Erlang lead time under an (s,Q)-type 
control policy with at most one outstanding order at any time. Later, Mohebbi [2] presents the exact treatment of a 
related problem, assuming that the supplier’s ON and OFF periods constitute an alternating renewal process and 
lead times follow a hyperexponential distributions. Mohebbi and Hao [11] study former problem (random demand, 
random lead time and lost sale) and assume that lead time follow Erlang distribution. They state that using Erlang 
distribution provides an effective means of analysis for the supply interruption problem under a broad spectrum of 
lead time distributions whose coefficients of variation do not exceed unity [11]. 
 
As pointed earlier, although inventory models with supply interruption and non-zero lead time present the most of 
real world problems, the existing literature on it is scarce. Our work provides an approximation integrated solution 
for a dyadic supply chain with supply interruption. Our model considers a case with Poisson demand, non-zero 
random lead time and backorder. The non-zero random lead time is the sum of constant transportation time and a 
random delay occurs due to availability of stock at the supplier. Also, in the case of unavailable supplier, the lead 
time, which retailer experiences, increases because of supplier’s OFF state. Numerical examples indicate that the 
proposed approximation cost function works with negligible errors. In the other hand, the literature on the supply 
interruption problems reveals another gap. In the modern global competitive market, the supplier and the retailer 
should be treated as strategic partners in the supply chain with a long-term cooperative relationship. But, to the best 
of our knowledge, there are no integrated model considers supply interruption in the literature. Previous studies only 
aimed to determine the optimum solutions that minimized cost from the retailer’s side, so the literature on integrated 
uncertain supplier is remain largely unexplored. Although, there are some studies that investigate the integrated 
supplier systems like Sajadifar et al. [16], but they assume that the supplier is available at any time an order is 
placed. 
 
This paper deals with an integrated supply chain with non-zero random lead time, Poisson demand, backorder 
shortages, continuous review policy and finally uncertainty in supply i.e. it is considered that the supplier has 
available (ON) or unavailable (OFF) state. We assume that the ON and the OFF durations are exponential random 
variables. As far as we know, for the first time in the literature this paper aims to derive approximation cost function 
of described system. Our work develops previous models in the literature by using both the integrity and the 
uncertainty in supply. Our study, with described assumptions, presents the real world more realistic. The rest of the 
paper organized as follow. In section 2, the notations and assumptions, which used in the problem formulation, are 
described. Section 3 presents the mathematical model that is investigated in this study. Numerical examples and 
simulation studies are presented in section 4. Finally, section 5 summarizes the paper and presents future researches.  
 
2. Problem Notations and Assumptions 
In this paper following notations are used: 

 : The inventory position for the retailer in the one-for-one ordering policy; 
 : The inventory position for the supplier in the one-for-one ordering policy; 
 : The transportation time from the supplier to the retailer where the supplier is in the ON state; 

 : The effective transportation time from the supplier to the retailer, that is the transportation time from 
the supplier to the retailer plus the expected value of the interruption incurs where the supplier is in 
the OFF state; 

 : Transportation time from the outside source to the supplier; 
 : Demand intensity at the retailer; 
 : The retailer reorder point; 
 : The retailer batch size; 
 : The holding cost per unit per unit time at the retailer ; 
 : The supplier reorder point (in units of the retailer batches); 
 : The supplier batch size (in units of the retailer batches); 
 : The holding cost per unit per unit time at the supplier; 

 : The shortage cost per unit per unit time at the retailer; 
 : The expected total holding and shortage costs for a unit demand in an inventory system with a one-

for-one ordering policy where the supplier is in the ON state; 
 : The expected total holding and shortage costs for a unit demand in an inventory system with a one-
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for-one ordering policy where the supplier is in the OFF state; 
 : The expected total holding and shortage costs for understudy inventory system where the supplier is 

in the ON state;  
 : The expected total holding and shortage costs for understudy inventory system where the supplier is 

in the OFF state;  
 : The exponential distribution parameter for the ON duration; 
 : The exponential distribution parameter for the OFF duration; 
 : The expected total holding and shortage costs for a unit demand; 

 : The total expected cost for the inventory system. 
 

To find  and  we express them as a weighted mean of costs for the one-for-one ordering policies. 
As we shall see, with this approach we do not need to consider the parameters and  explicitly, 
but these parameters will, of course, affect the costs implicitly through the one-for-one ordering policy costs. To 
derive the one-for-one carrying and shortage costs, we suggest the recursive method in S.äter, [17]. A summary of S. 
Axsäter[17], which adapted for proposed dyadic system, is presented at appendix. In 1993 using procedure 
introduced by S. Axsäter [17] in 1990, S. Axsäter [18], expressed exact cost function for a dyadic supply chain when 
supplier and retailer use continuous review policy. Equation (1) expresses such a cost function [18]. 
 

 
(1) 

Also, in this paper the following assumptions are considered: 
• Each customer demands only one unit of product. 
• Delayed retailer orders are satisfied on a first-come, first-served policy. 

 
 3. Problem Formulation 
In the above inventory system, when the supplier is in the ON or in the OFF state the lead time that experienced by 
the retailer is Lr or L'r, respectively. L'r is the sum of constant transportation time between the supplier and the 

retailer and the mean of interruption time, that is . The state of supplier, in introduced uncertain supplier model, 
is a two state continues time Markov chain. The Fig. 1 presents our model’s state transition diagram.  

 
Figure 1: The state transition diagram 

 
LEMMA 1: The steady state probability for ON state ( ) and OFF state ( ) are as follow (Equations (2) and 
(3)): 

 
(2) 

 
(3) 

 
Proof: The and  is easily obtain from solving flowing simultaneous equations  
and  

 [19]. As mentioned, according to continuous inventory control policy, when the retailer’s 
inventory position reaches  and the supplier be in ON state, the retailer orders a batch with size . In this case, 
(1) expresses exact cost function. But, if when the retailer’s inventory position reaches  the supplier be in OFF 
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state, the effective lead time is . Using  instead of  and in a similar way used for calculating 
 in (1), the cost function for OFF state is calculated. This cost function is named . It is worth mentioning that 

when one uses  for calculating , the related cost function can not be exact anymore. It is because of using   
as the mean time of being in OFF state from the time the retailer’s inventory position reaches . By using 
conditional probability, the expected total holding and shortage cost for a unit demand is expressed as follow 
(Equation (4)): 
 

 (
4
) 

Using (1) to (4), we can rewrite the expected total holding and shortage costs for a unit demand as follow: 

 
 

(5) 

Equation (5) expresses approximation cost function for a unit demand. Since the average demand per unit of time is 
equal to , the total cost of the system per unit time can then be written, as in Equation (6). 

 
(6) 

 
4. Numerical Results 
In this section numerical examples are presented to evaluate proposed approximation cost function. The problems 
are constructed by taking all possible combinations of the following values of the parameters , , , and  : 

= 1 or 4; = 1 or 4; = 0.1 0r 1 and = 5 or 20. Also, , =1, , =0.1, =0.5, and 
=0.05. Table 1 presents all constructed problems. In addition, for each problem the cost functions and the optimum 
values of  and  are calculated and presented in table 1. One can use recursive process suggested by Axsäter, S. 
[17] for calculating cost function and the optimum values of  and . Furthermore, the cost functions are 
compared with related simulation studies, and the errors are calculated and presented in table 1. The Average 
Absolute Error (AAE), the last row of table 1, clearly indicates that our proposed approximation method works 
perfect. 
 

Table 1: Sample problems and numerical examples 
Problem 
number       

Approximation 
Method Simulation Error Absolute 

Error 
1 1 1 0.1 5 -1 0 1.01196 1.00436 0.00757 0.00757 
2 1 1 0.1 20 0 0 1.61965 1.63369 -0.00859 0.00859 
3 1 1 1 5 1 4 3.05591 3.06478 -0.00289 0.00289 
4 1 1 1 20 2 5 4.37747 4.39046 -0.00296 0.00296 
5 1 4 0.1 5 -1 0 1.10398 1.10659 -0.00236 0.00236 
6 1 4 0.1 20 0 0 1.75261 1.75388 -0.00073 0.00073 
7 1 4 1 5 0 4 3.12155 3.12227 -0.00023 0.00023 
8 1 4 1 20 1 5 4.44208 4.43705 0.00113 0.00113 
9 4 1 0.1 5 -1 -1 1.80263 1.79982 0.00156 0.00156 
10 4 1 0.1 20 -1 0 2.50952 2.50938 0.00006 0.00006 
11 4 1 1 5 0 2 3.59451 3.58381 0.00299 0.00299 
12 4 1 1 20 0 4 4.97804 4.98697 -0.00179 0.00179 
13 4 4 0.1 5 -1 -1 2.32036 2.32021 0.00006 0.00006 
14 4 4 0.1 20 -1 0 3.04638 3.04498 0.00046 0.00046 
15 4 4 1 5 -1 3 3.99662 3.99710 -0.00012 0.00012 
16 4 4 1 20 -1 4 5.56957 5.56882 0.00014 0.00014 



488 
 

Average Absolute Error (AAE): 0.0021029 

5. Conclusion 
In this paper, we studied an integrated dyadic supply chain model with uncertainty in supply and Poisson demand. In 
addition, in proposed integrated inventory system, lead time is a random variable consists of a fix transportation time 
plus a random delay occurs due to availability of stock at the supplier, therefore the lead time is non-zero random 
variable. Furthermore, in the case of unavailable supplier, the lead time which retailer experiences increases because 
of supplier’s OFF state. As mentioned, in the modern global competitive market, supplier and retailer should be 
treated as strategic partners in the supply chain with a long-term cooperative relationship. Therefore models need to 
take into account both retailer and supplier point of view.  By considering both the integrity and the uncertainty, our 
integrated inventory system presents the real world more realistic than former studies.  
 
Investigating an integrated supply chain with multi-supplier is a valuable potential area for future researches, 
because using multi suppliers can reduce the expected total cost. It is because, usually, in practice for supply chains 
with uncertainty in the supply, multi-sourcing strategies are used. Although this study investigates a dyadic supply 
chain with uncertainty in supply, but the proposed method in this paper provides a base for analyzing more complex 
supply chains, which going to appear in future works.  
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APPENDIX 
This Appendix is a summary of Axsäter, S. [17]. For more details one can see [17]. We define, as in [17], the 
following notations [17]: 

=)(tg sS Density function of the Erlang ( sS,λ ) , and =)(tG sS Cumulative distribution function of )(tg sS . 
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The expected retailer’s inventory carrying and shortage cost to fill a unit of demand is:  
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Furthermore, for large value of sS , we have  
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The procedure starts by determining 0S such that  
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Where ε is a small positive number.  

The recursive computational procedure is:  
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and,  

The expected total holding and shortage cost for a unit demand in an inventory system with a one-for-one ordering 
policy is:  
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