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Abstract 

 
In this paper, we develop a supply chain network design (SCND) model considering both strategic and operational 
decisions. The model determines plant and DC locations as well as product shipments among components of 
network regarding single sourcing and capacity of plants and distribution centers (strategic level) while the 
shipments have to wait in the queue for transporting from plants to DCs (operational level), which result in the lead 
time is incorporated in model. In practice, the parameters of problem such as demand, cost and capacity are changed 
and aren’t described as certain. Hence, we extend proposed SCND model by defining demands as different scenarios 
and apply the two-stage stochastic programming approach to solve it. Finally, a numerical example is given to 
illustrate the mentioned model and some other scenario based approaches are presented so that decision makers 
select one of the approaches based on their policy. 
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1. Introduction 
The concept of supply chain management (SCM), which appeared in the early 1990s, has recently raised a lot of 
interest since the opportunity of an integrated SCM can reduce the unexpected/undesirable events through the 
network and can affect definitely the efficiency of all the members. A critical and momentous component of the 
planning activities in SCM is the efficient design of its supply chain. SCND problems include extensive scope of 
formulations ranged from simple single product type to complex multi-product/multi-period one, from linear 
deterministic models to complex non-linear stochastic ones and from customary forward networks to closed-loop 
ones. Many attempts have been made to model and optimize the supply chain design and these studies recently have 
been surveyed by Melo et al [11]. In SCM, three planning levels are usually distinguished depending on the time 
horizon: strategic (long term), tactical (medium term) and operational (short term). Simchi-Levi et al. [13] state that 
‘‘the strategic level deals with decisions that have along-lasting effect on the firm. These include decisions regarding 
the number, location and capacities of warehouses and manufacturing plants, or the flow of material through the 
logistics network”. This statement specifies a clear link between location models and strategic SCM. In practice, 
strategic decisions are made by top managers, while the tactical and operational decisions are made by bottom level 
managers. Examples of these tactical/operational aspects are the lead time and inventory control policy, the choice 
of transportation mode/capacity, warehouse design and management, vehicle routing, among others. On the other 
hand the uncertainty of parameters such as demand, cost and capacity is an important problem. To deal with the 
uncertainty of parameters exist two approaches: stochastic programming or robust optimization. In stochastic 
programming, the objective is to minimize the expected cost. In robust optimization, no probability information is 
known, however, and the objective is typically to minimize the worst-case cost or regret. (The regret of a solution 
under a given scenario is the difference between the objective function value of the solution under the scenario and 
the optimal objective function value for that scenario.) Our purpose in this paper is to present a supply chain 
network model considering both strategic and operational decisions. The model determines plant and DC locations 
as well as product shipments among components of network regarding single sourcing and capacity of plants and 
distribution centers (strategic level) while the shipments have to wait in the queue for transporting from plants to 
DCs (operational level). Then we extend proposed SCND model by defining demands as different scenarios and 
apply the two-stage stochastic programming approach to solve it. The rest of the paper is organized as follows. The 
next section briefly reviews the existing works in context of supply chain network design. Section 3 describes the 
proposed model and then it is illustrated by a numerical example in section 4. Finally, conclusions are given in 
section 5. 
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2. Literature Review 
Given a set of potential facility locations with capacity limits on the demand that can be served by each location and 
a set of customers, the objective of the fixed charge capacitated facility location problem (CFLP) is to locate 
distribution centers (DCs) among candidate locations to satisfy the demand points while minimizing the sum of 
fixed location and transportation costs. A number of authors [5, 2, 9] present models and solution procedures for the 
CFLP and its variations. Also SCND models are recently reviewed by Melo et al [11] in which identify four basic 
features for network structure to make it useful in strategic supply chain planning: multi-layer facilities, Single 
commodity/multiple commodities, single/multiple period(s) and deterministic/stochastic parameters. Usual 
questions to be answered are: (i) which facilities should be used (opened)? (ii) Which customers should be serviced 
from which facility (or facilities) so as to minimize the total costs? In addition to this generic setting, a number of 
constraints such as lead time are considered from the specific application domain. In literature [1, 12, 7, 14, 15] 
explicitly consider lead times in network design. Also in recent work [3, 4, 17, 18], the lead time at a candidate 
location is modeled as an explicit function of the volume of flow transport through that location. Most real SC 
design problems are characterized by numerous sources of technical and commercial uncertainty, and so the 
assumption that all model parameters, such as cost coefficients, supplies, demand, etc., are known with certainty is 
not realistic. A supply chain network is supposed to be in use for a considerable time during which many parameters 
can change. If a probabilistic behavior is associated with the uncertain parameters (either by using probability 
distributions or by considering a set of discrete scenarios each of which with some subjective probability of 
occurrence), then a stochastic model may be the most appropriate for this situation. There are a few research works 
addressing comprehensive (strategic and tactical issues simultaneously) design of SC networks using stochastic 
models. Mir Hassani et al. [10] considered a two-stage model for multi-period capacity planning of SC networks. 
Tsiakis et al. [16] also considered a two-stage stochastic programming model for SC network design under demand 
uncertainty. Goh et al. [6] developed a stochastic model of the multi-stage global SC network problem, considering 
supply, demand, exchange and disruption as the uncertain parameters. 
 
3. Problem Description 
We consider a supply chain network design problem with production facilities that produce multiple products for 
which demand occurs at geographically discrete locations (retailer) as possible scenarios. The objective is to locate 
plants and DCs to serve the retailers such that the sum of fixed cost of operating and opening plants and DCs plus 
the expected costs of transportation and inventory is minimized. In next section, we follow [14, 15] for modeling 
lead time at the DCs whose explanations are given below. Their model is a deterministic single product SCND 
problem with only one manufacturing plant while our model is a stochastic multi-plant, multi-product SCND 
problem with capacity restrictions for warehouses and manufacturing plants in which location of both the plant and 
warehouse are determined. 
 
3.1. Modeling lead time at the DCs 
We assume that products are shipped from the production facilities to DCs in full truckloads. The products incur a 
waiting time at the production facilities until material are accumulated adequately to fill a truck. Sending full 
truckloads is not necessarily optimal in all situations, but it is assumed that the DCs are far enough from the 
production facilities and that the shipment sizes are high enough (since we group the demands of multiple retailers) 
to justify it. The shipments dock at an unloading zone when they arrive at the DC and wait in a First-In-First-Out 
(FIFO) queue to be unloaded and sent to the retailers. This process is similar to the operation of a cross-docking 
facility and is shown in Figure 1 [15]. For such a replenishment process, the replenishment lead time at a DC has 
three components: 

• Load make-up time – The time elapse in the waiting area of the production facilities before the products are transmitted 
to the DC. As more demand is assigned to a DC, the average load make-up time per unit decreases. 

• Constant DC replenishment time (time/unit) – The replenishment lead time between the production facility 
and the DC due to the physical locations of facilities. We assume that it also comprises the time spent due 
to postponements such as material handling, and also general inefficiency and unavoidable processing, such 
as paperwork. 

• Congestion time – The time elapse in the unloading zone. At high utilization of the resources at the 
unloading zone, shipments have to wait longer in the queue. This states that congestion time increases as 
the demand assigned to a location approaches its capacity. 
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Figure 1: Supply chain structure used for modeling replenishment lead time at DCs 

 
The total mean demand answered by a DC specifies the expected load make-up time for a shipment to the DC. 
Whereas all shipments to a DC vie for the same resources at its unloading zone, the expected congestion time is also 
determined by the total mean demand served by a DC. Given this, we assume the replenishment lead time at a DC to 
be of the form: 
 

 
 

(1) 

 
Where B denotes the total mean demand allocated to the DC and W the throughput at DC. p is referred as the load 
make-up time parameter and r as the congestion time parameter. The motivation for this lead time model are 
deduced from earlier work by Eskigun [3], which used a model of this type derived from an extensive simulation 
study. Wang et al. [18] also use a similar model for lead times. The first term shows the average load make-up time 
per unit, q the constant DC replenishment time per unit, and the third term the average congestion time per unit. As 
the total mean demand at DC increases, load make-up time decreases and congestion time increases. 
 
3.2. Mathematical model 
In this section, we provide a mixed integer non-linear programming formulation to the single-source, multi-product, 
multi-stage SCND problem under uncertain demands along incorporating lead time in model. This problem is to 
determine the subsets of plants and DCs to be opened and to design the production and distribution network that will 
satisfy all capacities and demand requirement for each product while the demands of customers are stochastic. The 
objective function minimize sum of investment costs and the expected costs of production, transportation and 
inventory. The assumptions used in this problem are: 

1. The number of potential plants, DCs and their maximum capacities are known. 
2. Retailer demands are served from a single DC. 
3. The demands are uncertain and are considered as discrete scenarios. 

 
The following notations are used to define the mathematical model: 
 
Indices 

I Set of customers 
J Set of warehouses 
K Set  of plants 
L Set of products 
S Set of scenarios 

 
Parameters 

jlp  load make-up time parameter of lead time for product l at DC j 

jlq  constant lead time component per unit for product l at DC j 

jlr  congestion parameter of lead time for product l at DC j 
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kD  Capacity of plant K 

jW  throughput at DC j 

ij
sd  Demand for product l at customer i under scenario s 

M Maximum number of DCs 
N Maximum number of plants 

jo  Annual fixed cost for operating a DC j 

kg  annual fixed cost for operating a plant k 

lkv  Unit production cost for product l at plant k 

jlh  unit inventory cost for product l at DC j 

ijlc  Unit transportation cost for product l from DC j to customer i 

jkla  Unit transportation cost for product l from plant k to DC j 

ln  Space requirement rate of product l on a DCType equation here. 

lm  Capacity utilization rate per unit of product l 

sp  Occurrence probability of scenario s  
 
Variables 

jz  1 if DC j is opened, 0 o.w. 

kp  1 if plant k is opened, 0 o.w. 

ij
sy  1 if DC j serves customer I, 0 o.w. 

lk
sx  Quantity of product l produced at plant k under scenario s 

ijl
sq  Quantity of product l shipped from DC j to customer i under scenario s 

jkl
sf  Quantity of product l shipped from plant k to DC j under scenario s 

 
Using the lead time expression from Section 3.1, the expected lead time  at the DC at location j in each scenario 
when the mean demand flow of product l through that DC is  units is given by 

 
 

(2) 

Where 

 
 

(3) 

By Little’s Law, the inventory between the production facility and the DC at location j in each scenario is given by  
  (4) 

Therefore the expected inventory cost between the production facility and DC at location j in each scenario can be 
obtained as: 

  (5) 
 
Accordingly, the problem can be formulated as follows: 
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The objective function minimizes the total cost of the supply chain. It consists of the fixed cost of operating and 
opening plants and DCs and the expected costs of production, inventory and transportation of the products from 
plants to DCs and from DCs to customers. Equation (7) shows the unique assignment of a DC to a customer in each 
scenario, (8) limits the capacity for DCs, (9) restricts the number of DCs that can be opened, (10) and (11) give the 
satisfaction of customers and DCs demand for all products in each scenario, (12) limits the plant capacity, (13) 
restricts the total quantity of product shipped from a manufacturing plant to customers through DCs that cannot 
exceed the amount of that product produced in that plant in each scenario, (14) limits the number of plants that can 
be opened, (15)–(17) imposes the integrality restriction on the decision variables , (18)–(20) impose the 
non-negativity restriction on decision variables .  
 
In order to deal with the effects of uncertainty in demands, the two-stage stochastic programming approach is 
applied in this paper. Decision variables, which characterize the network configuration, namely those binary 
variables that represent the existence and the location of plants and warehouses of the SC, are considered as first-
stage variables. It is assumed that they have to be taken at the design stage before the realization of the uncertainty. 
On the other hand, decision variables related to the amount of products to be produced and stored in the nodes of the 
SC and the flows of materials transported among the entities of the network are considered as second-stage 
variables, corresponding to decisions taken after the uncertain parameter has been revealed. 
 
4. Numerical Example 
Consider a supply chain design network consists of plants, distribution centers and demand points. Suppose a 
company is willing to design its SC. This company produces two products for three customer located in three 
different cities A, B and C. There are four possible locations D, E, F, and G to establish the distribution centers as 
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well as four possible locations H, I, J and K to establish the plants. The products produced await in area of the 
production facilities before the products are transmitted to the DCs. Also products sent to DCs have to wait in the 
unloading zone. For simplicity, without considering other market behaviors (e.g. novel promotion, marketing 
strategies of competitors and market-share effect in different markets), each market demand merely depends on the 
local economic conditions. Transportation costs between nodes on each stage of SCN are acquired as coefficient of 
their Euclidean distances. The unit inventory cost of product at warehouses and unit production cost of products at 
plants are generated from U[1,10]. The load make-up time parameter and the replenishment lead time come from 
U[140,150] and U[1,4], respectively . The congestion time parameter is equalized to capacity of the DC. The space 
requirement rate of products on a DC, and capacity utilization rate of products in plants are drawn according to 

U[2,5]. While the fixed cost of DCs are generated from U[10000,30000], the fixed cost of plants are generated from 
U[50000,150000]. After calculating the total capacity of DCs as , the capacity of DCs are 
determined randomly by sharing the total capacity into DCs. In a similar way, the capacities of plants are 
determined. The total capacity of plants is calculated as . Finally, the demand for each type 
product is assumed as discrete scenarios with corresponding probabilities shown in Table 1. 
 
This problem attempts to minimize the fixed investment costs and expected cost arising from different scenarios 
while making the following determinations: 

• Which of the plants and warehouses to build (first-stage variables)? 
• Amount of product to be produce in each plant, amount of product to be transport from plants to 

distribution centers and finally amount of product to be transport from distribution centers to customer 
centers (second-stage variables)? 

Since the product demands are defined as discrete distribution, total number scenarios are obtained by multiplying 
possible situation of each uncertain demand is equal to . In fact the problem can be 
treated as a deterministic equivalent problem with  customers instead of . We use GAMS software to solve 
the numerical example. We also solve problem when expected value of demand is considered as deterministic 
demand in model and show the best and worst values of objective function over scenarios in Table 2 (1 means the 
plant/warehouse is built and 0 otherwise). Moreover, Figure 2 shows the objective functions in every scenario. Table 
2 and Figure 2 are a good tool for decision makers so that select one of approaches based on their policy. 
 
5. Conclusions 
In supply chain network design, strategic decisions and tactical/operational decisions have been usually tackled in 
isolation from one another. Also determining the optimal SC configuration is a difficult problem since a lot of 
factors and conditions practically are changed in long period of time which may turn a good location to day into a 
bad one in the future. Hence, the proposed model in this paper presented a supply chain network model considering 
both strategic and operational decisions. The model determines location of plants and DCs regarding single sourcing 
and capacity of plants and distribution centers (strategic level) while the shipments have to wait in the queue for 
transporting from plants to DCs (operational level), which lead to the lead time is incorporated in model. To afford 
the condition change in practice, then we extended model by defining demands as different scenarios. To deal with 

Table 2: The results of numerical example 

Approach 
Plants  warehouses 

Total Cost 
H I J K  D E F G 

Deterministic equivalent 1 0 1 0  1 1 1 0 363358.958 
Expected value problem 1 0 1 0  1 1 1 0 363282.553 
Worst objective function 1 0 1 1  1 1 1 0 507576.568 
Best objective function 1 0 1 0  1 0 1 0 315209.156 

 

Table 1: product demands 

Customers 
Product 1  Product 2 

Scenarios Probabilities  Scenarios Probabilities 

A 110 160 210 0.4 0.4 0.2  130 195  0.35 0.65  
B 125 180  0.3 0.7   115 180 245 0.3 0.4 0.3 
C 170 295 380 0.15 0.35 0.5  120 210  0.22 0.78  
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uncertainty of parameters, the two-stage stochastic programming approach and other approaches were presented for 
decision maker(s) to adopt the relevant policy.  
 

 
 

Figure 2: Values of objective functions in scenarios 
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