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Abstract 

 
This paper presents a granular computing approach to decision analysis using rough set theory and its variable 
precision extension. The multiattribute structure of decision domain is mapped to the notions of equivalence 
relations of rough set theory. It allows expressing decision categories in terms of approximation space wherein a 
decision class can be approximated through the partition of boundary region. The variable precision extension of 
rough set the memberships function is used to generalize the lower and upper approximations. The decision analytic 
problems can be mapped into rough set theory at predefined precision level.  
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1. Introduction 

In recent years there is a growing interest in application of granular computing models to decision 
analysis[1-3].  This trend is triggered by the fact that there is inadequate support to represent and characterize 
uncertainty when the decision makers or analysts are required to extract knowledge and induce semantic 
classification[3]. The part of the problem lies in model representation of decision domain in terms of idealized 
abstraction of primitives in crisp boundary sets. It is necessary to understand how the decision theoretic attributes or 
evidences suggesting various conceptual or thematic classifications can be understood in a broader approach to 
allow objective classification by considering the uncertainty intrinsic in decision processes.  

 
2. Rough Set Theory 

Rough set theory [4] allows one to characterize a decision class in terms of elementary attribute sets in an 
approximation space. Decison categories can be represented in the form ( }){, dCU ∪ , where d∉C is the decision 
attribute or the thematic feature and U is the closed universe which consists of non-empty finite set of objects (a 
number of decision categories) and C is a non-empty finite set of attributes that characterizes a decision category 
such that cVUc →:  for every c ∈ C, cV is a value of attribute c. This is achieved by means of information 
granulation or indiscernibility is at the heart of rough set theory. A finer granulation means more definable concept. 
For CP ⊆  the granule of knowledge about a forest with respect to indiscernibility relation can be represented as: 

)}()(|),{)( 2 xcxPccUxxPInd ′=∈∀∈′=                   (1) 
Thus, the objects x and x′  are indiscernible from each other if )(),( PIndxx ∈′  and the decision about the 
presence or absence of a given category is approximated by lower and upper approximation of decision concept as 
follows:  

XxIndUxXP ⊆∈= )(|{                                         (2) 
})(|{ ∅≠∩∈= XxIndUxXP                                (3) 

Thus, the objects in XP  can be classified with certainty as the on basis of knowledge   while, the objects in XP  

can be only classified as the possible occurrence of decision class and the boundary region ( XPXP − ) represents 
the uncertainty in decisive classification.  
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Since, in real world it is difficult to identify all possible causal attributes, it will be necessary to establish a 

methodology to identify the critical attributes by eliminating redundant attributes using feature reduction or 
knowledge compression methods in rough set knowledge systems.  This can be achieved by removing the attributes 
whose removal will not change the indiscernibility relation. A discernibility function 

}&1:{),.....,( 1 ∅≠≤<≤∧= ijijmA cnjicaaf representing the prime implicants of candidate attributes 

( mi aa ∧∧ ....( 1 ) generates the minimal set of attributes. While computing prime implicants is an NP-Hard [5] 
problem, it is possible to use heuristic algorithm (e.g., genetic algorithm [6, 7] or dynamic reducts [8] to generate a 
computationally efficient set of minimal attributes. Further, it is possible to discover the degree of dependency of the 
attributes to uncover causal inference of the decision process. The advantage is that the output will provide a 
mathematically rigorous means to trace or back track the causal links and support transparent decision processes. 
Thus the rules induced by rough set knowledge discovery process can be regarded as data pattern that represents 
relationship between multiple decision makers as well as qualitative knowledge. The minimal set of satisfactory 
rules will provide the means to generate a predictive measure where the associated risk can be evaluated easily. The 
rules can also provide new insight about the potential impact of some decision Table 1 illustrates an example of 
sample reading at different locations or granular units of knowledge set. 

 
Table 1:  An instance of Decision System in Rough Set 

Object ID [A1] [A2] [A3] Decision 
S1 Low Low High A 
S2 Low Low High A 
S3 High Low High D 
S4 Low High Low B 
S5 Low High Low C 

 
In this case, we can define the following partitions based of the indiscernibility relations: 
IND ({[A1], [A2], [A3]}) = {S1, S2}, {S3}, {S4, S5}}, as shown in table 2.  

 
Table 2: Equivalence Classes 

 

[A1] [A2] 

 
[A3] 

E1: [S1, S2] Low Low High 
E2: [S3] High Low High 

E3: [S4, S5] Low High Low 
 
A discernibility matrix defines each equivalence class with respect to one row and column. For a set of attributes in 
(U, A) the discernibility matrix MT(B) is an n x n matrix such that  

|)(/|)( BINDUmBM ijT == , where   

)}()(|{),( jiT EaEaBajiM ≠∈= ,for i, j = 1,2 , ..n 
 

Table 3:  The Discernibility Matrix 
 E1 E2 E3 

E1 ∅   
E2 {[A1]} ∅  
E3 {[A2], [A3]} { [A1], [A2], [A3] } ∅ 

 
Table 3 shows a symmetric discernibility matrix where each entry in the matrix represents attributes, the value of 
which render the equivalence classes different.  
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2.1 Discernibility Function 
Using the discernibility matrix, it is possible to calculate the reducts or most important attributes of the 
information systems. The discernibility function fA  for an information system is a Boolean function 
defined as follows:  

 
 
where n = | U/IND(B) |, and a disjunction is taken for all set of Boolean variable corresponding to the element of 
discernibility matrix.  
 
For example, the discernibility function of the above information system is: 
 
fA([A1], [A2], [A3]) = [A1] ∩( [A2] ∪ [A3])∩( [A1]∪ [A2]∪ [A3]) 
 
The prime implicants of fA provides the minimal subsets of attributes.   
 
2.2 Reducing Attributes: Reducts 
A reduct represents an attribute subset B ⊆ A of an information systems such that after removal of an attribute/s 
from an equivalence class it preserves indiscernibility relation. In other words, all attributes in a reduct is   
indispensable. The set of several such minimal attributes are called reducts. The set of prime implicants of the 
discernibility function determines the reducts. Using the discernibility function, we can determine the reducts of 
previous example. Each function is then minimized in product form:  
 
fA([A1], [A2], [A3]) = [A1] ∩( [A2]∪ [A3])∩( [A1]∪ [A2]∪ [A3]) 
fA([A1], [A2], [A3]) = ([A1] ∩ [A2]) ∪ ([A1] ∩ [A3]) 
Therefore, reducts are: Reduct 1 = {[A1], [A2]}, Reduct 2 = {[A1], [A3]} 
 
2.3 From Reducts to Rules  
Rules are generated from reducts in the form: α→β, read as “if α then β” where the antecedent (α) represents the set 
of conditions or set of conjunctive attributes and corresponding values and the consequent (β) represents the 
decision class or their disjunction. Transforming reducts to rules involves linking the attribute value of the object 
from which reducts are generated to the correspondent attributes of the reduct. Although finding equivalence class is 
computationally straightforward process, computing minimal reducts is NP-hard [9]. Therefore, computing reduct is 
a non-trivial task. However, there are various approximation algorithms for calculating reduct. These include genetic 
algorithm for computing minimal hitting sets [10], algorithm based on dynamic reducts, based on greedy approach 
of set covering heuristics [11], brute force approach [12]. However, once reducts are found, extracting rules from 
decision table is relatively an easy process.  From the previous example, the derived reducts can be used to extract 
the following rules: 
 
R1: [A1] (Low) AND [A2](Low) => Decision (A) 
R2: [A1] (High) AND [A2](Low) => Decision (D) 
R3: [A1] (Low) AND [A2](High) => Decision (B) OR Decision (C) 
R3: [A1] (Low) AND [A3] (High) => Decision (A) 
R4: [A1] (High) AND [A3] (High) => Decision (D) 
R5: [A1] (Low) AND [A3] (Low) => Decision (B) OR Decision (C) 
Using these rules it is now possible to classify new instances of decision class.  

 
3. Decision Approximation Evaluation by Granularity Measures 
The partition induced by the equivalence classes can be mapped with different set of decision classes and to their 
lower and upper approximations. The set of objects that certainly are members of a class are assigned to the lower 
approximation region. The upper approximation is a set consisting of objects that are possibly members of a class 
with respect to the attributes or given knowledge. The difference between the upper and lower approximation is the 
boundary region or the region of uncertainty. The rough set defined in this sense is based on the concept of total 

i,j ∈{1..n} 

fA   =  mij (Ei, Ej) 
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membership function. In a variable precision rough set, [13] the definition of lower and upper approximation is 
referred with respect to a variable precision where the lower and upper approximations are a special case.  

}1)(|{ πµπ −≥∈= xUxXA X
A                                            

})(|{ πµπ ≥∈= xUxXA X
A                                                 

 
By using rough memberships, the lower and upper approximations can be generalized to arbitrary levels of 
precision ]5.0,0[∈π . This is based on the concept of the boundary region thinning of variable precision model 
where we can look at the distribution of decision values within each equivalence class, and exclude those decisions 
having lower frequency threshold ofπ . In this case, the lower frequency decision values can be treated as “noise”.  
Further, the concept of sensitivity and specificity can be used to evaluate the approximation [14].  These evaluation 
parameters are defined as follows: 

X
XXA

XAysensitivit
∩

= ππ ),,(                                                   

XU

XUXAU
XAyspecificit

−

−∩−
=

)()(
),,(

π
π                                                  

 
Sensitivity indicates the number of objects correctly approximated as members divided by the actual number of 
members. Specificity is interpreted as the number of object correctly approximated as non-members divide by the 
actual number of non-members. Accuracy is defined as the ratio of total number of correctly approximated object to 
the total number of objects. Accuracy is weighting between sensitivity and specificity.  

),,(),,(),,( XAyspecificit
U

XU
XAysensitivit

U
X

XAaccuracy πππ
−

+=                 

4. Conclusions 
The application of rough set techniques to multiattribute decision analysis and classification problem offers useful 
semantics for handling imprecision and uncertainty in finite resolution decision domain. Unlike the classical 
approach where there is rigorous requirement of decision parameters and conditionings attributes the rough set 
approach provides flexibility and objective approximation schemes. It has been shown that variable precision 
memberships function can be used to generalize the lower and upper approximations to arbitrary levels of precision. 
Thus, the rough set knowledge induction process can be implemented for handling decision analysis problems to 
incorporate qualitative knowledge in the knowledge induction process.  
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