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Abstract 
In a vendor-buyer cooperative inventory system several factors including planned shortage, controlled 

sales price, shipment size and frequency affect the total profit. Though a larger order size reduces the 
number of shipments, it conversely increases the lead time and transportation cost. On the other hand, 
planned shortage of items reduces the buyer’s storage cost; at the same time it increases the backorder 
cost for the buyer. By controlling sales price, the buyer can affect the rate of market demand which 
eventually affects the total profit. The problem is to find an appropriate sales price, backorder quantity, 
ordering size and frequency that lead to maximum joint total profit. Considering all of these aspects for an 
imperfect production system, this paper presents two joint total profit models for two different cases 
depending on the location of the quality inspection. A search approach, based on random walk with 

random restart method, is used to solve both models for obtaining suboptimal solutions. A numerical 
instance is presented to illustrate the solution approach. The numerical instance presents that the solution 
noticeably differs when quality inspection is done by the buyer instead of vendor. 
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1. Introduction 
Recently, joint economic lot size (JELS) problems have been in the spotlight of researches on supply chain. 

Many firms have adopted this type of lot-size models which coordinate inventory replenishment decisions between 
the buyer and the vendor. It has been proved that in most case if vendor and buyer make decisions jointly to 
determine the best policy, it is more rewarding for them than if they make decisions independently. Since JELS 
models have received more attention by firms, it has encouraged lot of researches to determine the best policy which 
can get the minimum total cost or the higher supply chain profit under an integrated vendor-buyer cooperation.  

In many researches on JELS models the imperfect production, lead time, pricing decisions or planned shortages 
have been studied separately. Indeed, since Goyal (1977) introduced the joint total cost for a vendor and a buyer and 
Benerjee (1986) extended Goyal’s work to determine the joint optimization of the cost functions of the vendor and 
the buyer, many researchers have studied JELS model in a lot of streams. 

The imperfect production has been introduced in an economic order quantity model by Porteus (1986). Salameh 
and Jaber (2000) extended Porteus’s work by finding the expected annual profit considering a 100% screening 
process where the rate of defective items is a random proportion. They also considered that imperfect items will be 
sold at the end of the screening process, in a single batch. Salameh and Jaber’s work has inspire many others 
researches. Huang (2002) considered a two-stage supply chain where a penalty cost is applied to the vendor if a 
shipment contains defective items. As well as Huang, researchers as Eroglu and Ozdemir (2007) added shortages to 
Salameh and Jaber’s model. Wee et al. (2007) also studied an optimal inventory model for items with imperfect 
quality and shortage backordering. Since this study, Chang and Ho (2010) extended Wee et al.’s work by using the 
renewal-reward theorem to modify the expected profit. Ha and Kim (2012) also reported a cooperative inventory 
model for imperfect quality. 

On the other hand, pricing decisions have impact on the profit of a model and on the demand. Researches that 
consider pricing decisions in JELS model have been conducted in many streams. Viswanathan and Wjang (2003) 
studied discount pricing decisions in distribution channels with price-sensitive demand. Ordering and pricing 
policies with price-sensitive demand have been studied in the research of Sajadieh and Jokar (2009a). In that 
research the maximize profit have been found by assuming a linear demand. 
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Besides, imperfect production and pricing decisions the lead time has been often studied in the case of a JELS 
model, especially deterministic lead time. Sajadieh and Jokar (2009b) studied expected total cost of JELS models 
where the lead time is a stochastic variable. Since Kim and Benton (1995) discussed about considering the impact on 
lead time of the shipment size, researchers started to consider lead time as a function or decision variable instead of 
a given parameter. Ben-Daya and Hariga (2004) developed a single vendor single buyer model in which lead time is 
considered as a linear function. They assumed that lead time is proportional to the quantity ordered. 

In previous researches, several models have been studied on JELS considering lead time, imperfect production, 
pricing decisions and planned shortages separately. However, the combination of all these three factors is lacking in 
the above discussed research publications. It is reported that Rad et al. (2014) have developed JELS models 
considering imperfect production, shortages and pricing decisions. The aim of this current research is to extend the 
works of Rad et al. (2014) by introducing a more practical aspect when the lead time is significantly correlated with 
the order quantity. Lead time is assumed to be a function of the order quantity and lead time affects the fixed 
transportation cost as well. Hence, this paper presents an inventory model which considers the impact of order 
quantity on lead time and on the transportation cost. 

The objective of this research is to derive an expected joint total profit function of the system, and then it is used 
to find the optimal order quantity, selling price, number of shipments and backorder quantity that maximize the 
profit of the joint system considering. The paper is structured in a sequential order. Section 2 introduces the problem 
and defines the assumptions and notations used in formulating the problem. Section 3 develops the mathematical 
models. Section 4 presents the solution methodology and Section 5 presents a numerical example. Section 6 
concludes on the overall outcomes and results. 

2. Problem Description 
This research considers a single vendor and a single buyer for a single product case. In practice, production can 

be imperfect and the vendor can decide to apply quantity discounts to influence the buyer and encourage him to buy 
in large quantity. The buyer orders a certain quantity of an item for each shipments. When buyer has the 
responsibility to do 100% screening as a quality inspection, each one of the shipments received by the buyer may 
contain a certain proportion of defective items. The inspection can occur at the vendor’s facility as well. In that case 
buyer will receive a 100% good quality product. These two options are presented as two different cases in this paper. 
The buyer can decide to make planned shortage to reduce his holding cost, so the backordering cost and the buyer’s 
backorder quantity are considered.  

As we consider the vendor making price decisions to influence the buyer, the demand is known as a function of 
the price selling and the transportation cost is known as a function of lead time, while lead time is a function of the 
order quantity. Thus, if quantity discounts are applied, buyer will want to buy in large quantity to have a lower price. 
Though a lower price will increase the demand and sales, a large quantity will increase the transportation cost, 
buyer’s holding cost and the lead time. Hence, an appropriate policy has to be determined for the order quantity, 
selling price, as well as number of shipments and backorder quantity in order to maximize the joint profit. The 
following assumptions will be helpful to understand the problem clearly.  

(i) A single-vendor single-buyer supply chain for a single product is considered. 
(ii) The demand rate is known as a function of the selling price.  
(iii) All products are subjected to an error free screening process, to identify the defective items.  
(iv) The unit purchase price from the vendor, is reduced at a proportion of defect rate.  
(v) Both the screening and production rates are higher than the demand rate. 
(vi) The defective items are scrapped without incurring any cost or generating any salvage value. 
(vii) The expected number of good items is equal to the demand rate during the cycle time.  
(viii) The lead time is an exponential function of the order quantity. 
(ix) The fixed transportation cost is a function of the lead time. 
(x) Time of the system is infinite and inventory is continuously reviewed all along. 
(xi) All the items produced are delivered in full shipments during the cycle time.  

To formulate this problem some notations are required to be stated first. The notations used for this paper are 
divided into three categories, namely parameters, variables and measures. Here the parameters are, D = demand rate 
(units/year),  = coefficient in the demand rate function,   = exponent of the selling price, S = vendor’s set up cost 

($/setup), A  = buyer’s ordering cost ($/order), 
vh  = vendor’s holding cost ($/unit/year), bh  = buyer’s holding cost 

($/unit/year),  = buyer’s backordering cost ($/unit/year), 
pc  = unit production cost ($/unit), ,b sc = buyer’s 

screening cost ($/unit), ,v sc  = vendor’s screening cost ($/unit), ,v wc  = vendor’s warranty cost for defective items 
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($/unit), vc  = unit cost for handling or receiving an item ($/unit),   = defect rate, ( )f  = unit purchase price from 

the vendor ($/unit), maxf  = maximum unit purchase price ($/unit), x  = reducing coefficient of the purchase price 

($/unit/ ), bs  = buyer’s screening rate (unit/year), P  = vendor’s production rate (units/year), /r D P , /b br D s  , 

  = lead time (year), 0 = minimum lead time (year),   = exponent of the order quantity in the lead time function, 

( )g   = fixed transportation cost per shipment ($/order), 0F  = minimum fixed transportation cost per shipment 

($/order/year), T  = buyer’s replenishment cycle time (year/order), 
vI  = vendor’s inventory level (units), bI  = 

buyers inventory level (units). On the other hand, the decision variables are denoted as p = buyer’s unit selling price 

($/unit), Q  = buyer’s order quantity (units/order), b  = buyer’s backorder quantity (units/order), n  = number of 

shipments per production cycle of the vendor. The objective function are defined as 
bJTP = joint total profit when 

buyer inspects the items ($/year), 
vJTP  = joint total profit when vendor inspects the items ($/year). Using these 

notations, the mathematical models for both Cases are derived and solved for obtaining a suitable strategy for the 
collaborative system. 
 

3. Mathematical Modeling 
This section develops two JELS models when planned shortages occur and when the rate of defective is a given 

value. In Case 1 the buyer inspects the items and Case 2 the screening is done by the vendor. In each model the total 
profit of the vendor and the buyer are calculated separately and then the combined is found to express the joint total 
profit (JTP) of the integrated vendor-buyer system. Here, we consider four functions for the demand rate, unit price, 

lead time and transportation cost which are listed in the assumptions, respectively. Thus, the demand rate D p
   

where 0  and 1  , the unit purchase price 
max( )f f x   where 

max 0f x  , the lead time 
0Q

  , 

where [0,1]  , and the fixed transportation cost 
0( )g F  0 0F Q

 . 

3.1 Case 1: Inspection done by the buyer 
For the first case, we consider a situation where the inspection of the items is done by the buyer. In this situation, 

the shipment contains defective items when it arrives at the buyer’s facility. The buyer’s screening cost is added to 
the total cost for the buyer. In this model the inventory levels for both vendor and buyer are shown graphically in 
Figure 1 on a continuous time scale. The average inventory level for the vendor is obtained by the method developed 
by Sarker and Parija (1994). In order to obtain the joint total profit, the total profit of the buyer and of the vendor are 
calculated separately. Buyer’s total profit includes inventory holding, ordering, backordering, transportation, quality 
inspection, and items handling or receiving costs, as well as purchasing and selling prices. The vendor’s total profit 
includes inventory holding, setup, production and warranty costs, as well as his selling price to the buyer. 

 
Figure 1. Vendor’s and buyer’s inventory level when buyer inspects the items (Case 1) 
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Finally, the joint total profit, ( , , , )
b

JTP p Q b n  for Case 1 is obtained by adding the total profit of the buyer in and 

the total profit of the vendor. After simplification, the joint total profit becomes  

( , , , )
b

JTP p Q b n
, ,

=
1

b s v p v w
c c c c

p p





   
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2 2(1 )( ) /
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hA g S n b b
p Q b h
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        

 

 
2
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b
b

b

h b
Q b r

r Q
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 
 

      

(1 )
2 (1 ) ( 1)

2
v

h Q n D
n n

P

        
.          (1) 

 

3.2 Case 2: Inspection done by the vendor 
For Case 2, the inspection takes place at the vendor’s facility. This means that the shipments contain only perfect 

items at their arrival to the buyer. Hence, in this case, the vendor’s total profit includes screening cost i.e., quality 
inspection cost, in addition to the holding [refer to Figure 2], setup and production. It is to be noted that, the 
warranty cost is not present in the vendor’s total profit; similarly, the unit price reduction and screening cost is 
absent in the buyer’s total profit function. 

 
Figure 2. Vendor’s and buyer’s inventory level when vendor does the quality inspection (Case 2). 

 

Thus, the joint total profit, ( , , , )
v

JTP p Q b n  in Case 2 is obtained by adding the total profit of the buyer, and the 

total profit of the vendor. The simplified final version of the joint total profit function is presented in Eq. (2). 
2 2

,

2

( )( ) / 2
( , , , )= ( 1)

1 2 2 1 (1 ) 2

p v s b v
v v

c c h Q b h QA g S n n nD b
JTP p Q b n p c p p n

Q Q P Q

   
  

     
               

.       (2) 

Based on the situations (Case 1 or 2) the problem is solved for obtaining appropriate values of , ,p Q b  and n  

that maximize 
b

JTP  or 
v

JTP . 

 

4. Solution Methodology 
This section presents the methodology to find the best values of the decision variables, p, Q, n and b that 

maximize the joint total profit in any case. It can be proved that the function ( , , , )
b

JTP p Q b n  is concave in b as well 

as concave in n  for a given value of p and Q. The first partial derivatives of 
b

JTP with respect to b  and n  lead to 

the optimal values of the backorder quantity, 
*

b and number of shipments,
*

n . This derivatives yield 

*

b P
b Qh R and *

p
n V Q , respectively, where 

 
2

2

(1 )

2 (1 ) / 1 (1 )
b

p

b b b

r
R

h r h

 
  

 


    
 and 

 2 (1 ) (1 )(2 ) 1
p v

V SD h r        . Substituting 
*

b and 
*

n  in Eq. (1) , 
b

JTP can be obtained as 
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 

2 2 3 2

, , ( )( )
( , )

1 (1 ) (1 ) (1 ) 2(1 ) (1 ) (1 ) / 1

b s v p v w b b p b b p b p

b

p b
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vh Q
 .                         (3) 

Similarly for Case 2, the function ( , , , )
v

JTP p Q b n  is concave in b , as well as concave in n for given values of p 

and Q. Hence, from the first partial derivatives of ( , , , )
v

JTP p Q b n with respect to b and n we have  *

b b
b h Q h    

and *

p
n W Q , respectively, where 
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W
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2
,
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2( )
( , )= 1 (2 )

1 2 2( ) 2 (1 ) (1 ) 2

p v s p pb b b b v v
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p b b b

c c W W rh Q h h h Q h h QA g S p
JTP p Q p c p p W

Q W h h h
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    
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
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                         
.      (4) 

Hence, if the optimum value of ( ,p Q ) is known the corresponding optimum values of b  and n  can be obtained 

from the corresponding expressions of 
*

b  and 
*

n noted here. In order to maximize the objective 

functions ( , )
b

JTP p Q in Eq. (3) or ( , )vJTP p Q  in Eq. (4) for appropriate values of p  and Q , a random walk with 

random restart search approach is followed in this paper. This search approach starts with a random point ( ,p Q ) and 

updates the solution point by searching multiple random directions (random walk) for increasing the objective 
function value. The random walk continues until the objective function reaches to a local optimal. The procedure 
restarts with a new random point and it is repeated for a preset number of iterations. 

 

5. Numerical Example 
In this section the two Cases are illustrated with the same numerical example. Here a supply chain of a cell 

phone screen is considered. A similar numerical example is presented in Rad et al.’s (2014) paper. The screen has a 

decreasing demand rate 1.25300000
p

D p
 units/year. The manufacturer has a holding cost 

v
h =$0.25/unit/year, a 

production cost 
pc  =$2.5/unit, a screening cost ,v sc  =$0.1/unit, a warranty cost ,v wc  =$11/unit, a set up cost S  

=$1200/setup. The buyer has a holding cost 
b

h  =$0.86/unit/year, an ordering cost A=$100/order, a screening cost 

,b sc  =$0.1/unit and a handling cost 
vC  =$1/unit. Furthermore, the transportation cost is given by 0.2

0 0( )g F Q   

where 
0F  =$100/order, 

0 =1week=1/52 year. The unit purchase price is given by ( ) 9 20f    . The shortage 

cost is  =$1.5/unit/year, and the rate of defect is given by 0.02  . The ratios are r  =0.8, 
b

r  =0.3 and 
v

r =0.4. 

5.1 Solution to the numerical instance 
At first let us consider the case when the vendor inspects the shipment. Thus, the joint total profit function in 

Eq. (4) is considered to be maximized. The joint total profit ( , )
v

JTP p Q  for this example is represented in Figure 3. 

A sub-optimal solution *( , )p Q  is obtained by random walk with random restart search approach. Then the 

corresponding 
*

b  and *
n are yielded from the expressions listed in Section 4. Both the lower and upper integers of 

*
n  are checked and the best solution is evaluated for the appropriate integer value of n [see Figure 4].  

 
Figure 3. Representation of ( , )

v
JTP p Q  for the numerical instance. 
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In Figure 4, it is shown that * *

,1 ,2v v
JTP JTP . As we are maximizing *

vJTP , the best known solution 

is * 1395,Q  * 17.73p   , * 508b   and * 14n  , which maximize the joint total profit *
vJTP = $113,865.94. Similarly, 

in Case 1, when quality inspection is done by the buyer, the best known solution is obtained 

as, * 1259,Q  * 20.24p  , 
* 339b   and 

* 16n  , which yields *

b
JTP =$112,169.28. 

*
p   

*
Q  *

b  
*

n  
*( , , , )

v
JTP p Q n b  

17.71 1487 542 13.14 113866.02 

 

 

 

 

Figure 4. Sub-optimal solutions for ( , , , )vJTP p Q n b . 

5.2 Paired t-test 
Since the resolution of the models has shown that the concavity cannot be easily proved in closed form, two 

search procedures have been employed within a certain feasible range. The first one is random walk with random 

restart and it is presented in the previous section. The second one is goal seek. This search procedure gives the best 

known input value that we need to have a specific result of a formula. This search procedure starts with 1Q   and 

p  is found by searching the best value to have the first partial derivative with respect to p  of the expected total 

profit equal to zero. Then Q  is found by searching the best value to have the first partial derivative with respect 

to Q  of the expected total profit equal to zero. The two steps are repeated until the differences between the two last 

values of Q is less than  . These two search procedures do not guarantee that a global optimal solution can be 

found. However, the comparison of the two methods will help to ensure the existence of a solution and help to find 
the best known optimal solution.  

Table 1. Parameters for 20 examples for ( , , , )vJTP p Q n b . 

N° y   A   S   
b

h   
v

h   r   
maxf   x      

0F   0      

1 0.02 100 1200 0.86 0.25 0.8 9 20 300000 100 1/52 0.1 

2 0.02 100 1200 0.25 0.25 0.8 9 20 200000 100 1/52 0.2 

3 0.02 100 1200 0.86 0.86 0.8 9 40 100000 100 2/52 0.5 

4 0.02 200 1400 0.86 0.25 0.5 20 22 30000 100 2/52 0.7 

5 0.02 200 1200 0.86 0.25 0.5 25 20 3000 100 2/52 0.95 

6 0.2 100 1200 0.86 0.25 0.5 9 20 300000 100 2/52 0.1 

7 0.2 100 1400 0.25 0.25 0.5 9 20 200000 100 2/52 0.2 

8 0.2 100 1200 0.86 0.86 0.5 9 40 100000 100 2/52 0.5 

9 0.2 200 1400 0.86 0.25 0.5 20 22 30000 100 2/52 0.7 

10 0.2 200 1200 0.86 0.25 0.5 25 20 3000 100 2/52 0.95 

11 0.3 100 1200 0.86 0.25 0.5 9 20 300000 100 2/52 0.1 

12 0.2 100 1800 0.4 0.1 0.5 10 20 200000 200 2/52 0.2 

13 0.3 100 1200 0.86 0.86 0.5 9 40 100000 100 2/52 0.5 

14 0.3 200 1400 0.86 0.25 0.5 20 22 30000 100 2/52 0.7 

15 0.3 200 1200 0.86 0.25 0.5 25 20 3000 100 2/52 0.95 

16 0.35 200 1500 0.6 0.2 0.1 9 20 300000 300 1/52 0.1 

17 0.45 100 1200 0.4 0.1 0.1 9 40 200000 100 1/52 0.2 

18 0.45 100 1400 0.25 0.25 0.1 5 20 100000 200 2/52 0.5 

19 0.35 200 1800 0.86 0.25 0.1 20 22 30000 100 2/52 0.7 

20 0.45 300 1400 0.86 0.25 0.1 10 20 3000 100 1/52 0.95 

*
Q  

*
p  *

b  
*

,2( 14)
v

JTP n   

1395 17.73 508 113,865.94 

*
Q  

*
p  *

b  
*

,1( 13)
v

JTP n   

1503 17.70 
 

548 113,865.45 

optn    
optn    
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Hence in this part 20 examples have been resolved with the two search procedures for the two cases. The parameters 
for these 20 example are listed in Table 1. The two set of solutions (random walk with random restart and goal seek) 
in each cases are seen as paired observations (total profit). A paired t-test have been realized and it proves that the 
two methods give equal solutions. This result convinces us that a local optimal solution exists and that the search 
procedures developed give a correct approximate solution. 

These examples consider the case when the inspection occurs at the vendor. The parameters of the 20 examples 

and the result of the paired t-test are shown in Table 2. The parameters pc  , 
v

c  , ,v sc  , ,v wc  and   are not changed. 

 

Table 2. Sub-optimal solutions for ( , , , )vJTP p Q n b of the twenty examples. 

VENDOR with random walk VENDOR with goal seek Differences 

N° 
*

p  
*

Q  *
b  

*
n  

*

v
JTP  *

p  
*

Q  *
b  

*
n  

*

v
JTP  d   

1 18,95 1404 1027 14 114290,38 17,73 1395 508 14 113866,94 423,44 

2 19,11 1228 579 12 75943,91 17,51 1462 209 11 75785,93 157,98 

3 20,42 830 387 7 36587,75 16,72 788 287 8 36187,06 400,69 

4 23,64 1121 1064 3 10531,33 22,72 607 221 6 10281,18 250,15 

5 46,51 221 221 3 848,22 41,64 121 44 6 802,39 45,83 

6 2,29 1551 998 6 109398,07 21,6 1325 483 7 109058,14 339,93 

7 22,39 2063 978 4 72488,75 21,6 1364 195 6 72365,44 123,31 

8 24,42 939 783 3 34657,84 22,76 562 205 5 34427,27 230,57 

9 27,41 912 865 3 10129,69 25,64 573 209 5 9903,33 226,36 

10 52,37 184 184 3 819,54 43,9 119 43 5 773,23 46,31 

11 24,72 1528 977 5 106569,18 23,88 1155 421 7 106239,14 330,04 

12 25 1290 268 5 70540,68 23,76 1428 204 5 70477,26 63,42 

13 27,17 859 513 3 33694,26 24,62 617 225 4 33510,51 183,75 

14 30,13 821 786 3 9876,96 27,91 506 184 5 9659,82 217,14 

15 56,56 166 166 3 802,39 45,5 109 40 5 755,31 47,08 

16 30,69 1006 870 4 100696,76 30,25 1395 508 3 100399,46 297,3 

17 31,15 1121 788 3 66558,67 30,75 1220 174 3 66455,67 103 

18 35,63 573 395 2 31356,75 35,18 399 145 3 31221,17 135,58 

19 38,79 608 545 2 9183,92 39,22 402 147 3 9028,26 155,66 

20 65,5 136 136 2 747,99 63,56 127 46 2 712,47 35,52 

 

Here, mean value of the differences 190.653d   and standard deviation of the differences 121.13
d

s   results 

0.35t  . The corresponding critical value is 
19,0.95 1.729t   . Since 19,0.95t t  , we can not reject the null 

hypothesis which states that both of the two solution methods give the solution. Similarly, in Case 1, when quality 

inspection is done by the buyer, we obtained 402.683d   , 1353.42
d

s  and 0.07t  . The null hypothesis can 

not be rejected neither. 

6. Conclusion 
A joint economic lot size (JELS) problem with imperfect production, pricing decisions and planned shortages is 

presented in this paper, when the lead time and transportation cost are significantly correlated with the order size. 
The objective of the problem was to maximize the joint total profit, by optimally determining the order size, unit 
selling price, backorder quantity and number of shipments. The problem is mathematically formulated for two cases 
and solved heuristically. A closed form solution for order quantity and unit selling price is not on hand due to lack of 
global concavity. The solution method follows derivative approach for finding optimum number of shipments and 
backorder quantity. Whereas, the order quantity and unit selling price were determined by a search heuristic namely, 
random walk with random restart. An efficient heuristic development is the potential extension of this research. 
Depending on the instance, a case based concavity in a certain solution range can lead to the finding of a local 
optimum solution. 
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