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Abstract  
 

In supply chain practices, designing supply network is a strategic decision that affects the survival of an 

organization. Although demand and supply uncertainties are well observed in supply chains, it has not 

been addressed pro-actively in the design model.  Vast literatures on network design model had been 

dealing the problem using either deterministic (using mean value) or stochastic programming. We 

propose a mathematical model using robust approach where the variability of system performance is 

taken into account early in the modeling process.  Using this robust optimization approach, the knowledge 

of demand and supply distributions is not critical. Furthermore, only a small number of scenarios are 

needed to solve the problem and yet it is able to maintain the adequacy of the model. The result from an 

illustrative example shows that total costs vary following a normal distribution where its variance depends 

on the risk parameters.  
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1. Introduction 
Nowadays, most companies believe that decision making based on the supply chain concept is necessary to ensure 

the survival of their organizations. In an emerging environment of demanding customers, companies must correctly 

respond to their needs in timely and swiftly manners. Consistencies of meeting demands at the right amount, at the 

right time and at the right qualities are becoming more important to the customer.  

 

It is well observed in supply chain practices that uncertainties are present in many ways. Demand forecasts are 

subject to errors which may results in real demands higher or lower than their forecast average. In some countries, 

transportation lead times are very difficult to forecast due to heavy congestion, weather and accidents.  If companies 

do not deal with these uncertainties appropriately, they are prone to poorer performance in particular the total cost of 

meeting demands. It is therefore necessary for companies to take these uncertainties into account when developing 

their strategic plans. According to Geary et al. (2002), uncertainties in supply chains can be categorized into process, 

supply, demand, and control uncertainties. Gupta and Maranas (2003) stated that those uncertainties needs to be 

tackled with supply chain planning because decisions made in supply chains are very critical to the survival of the 

company.   

  

Mulvey et al. (1995) introduced the robust optimization approach when dealing with uncertainties.  Their approach 

is proactively seeking the “best” solution in term of robustness which is insensitive to uncertainties. This robust 

optimization concept has been widely applied in many areas of decision making including in supply chains (e.g. Ben 

Tal, 2005, Bertsimas and Thiele, 2004). To the best of our knowledge, however, these methods have not been 

implemented for supply network design. The problem has been solved by using stochastic programming (Nagar and 

Jain, 2008, Santoso et al, 2005, Kallrath, 2005).  We believe that solving the supply network design problem with 

robust optimization approach will bring about some advantages, for example there is no need for the assumption of 

parameter distribution.   
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In this paper, we propose a robust optimization approach for supply network design under demand uncertainty.  

Although uncertainties from customer demands have been widely investigated (e.g. Ben Tal, 2005), it is still 

relevant in today's changing environment.  It will be shown that even with a small number scenarios, the model 

gives a rather good solution in term or robustness. 

 

2. Problem Description 
 

A network can be described as a graph G (V,A), where V is a set of vertices and A is a set of arcs connecting 

vertices in the graph. Set V consists of three sets, i.e. I (set of suppliers), J (set of facilites) and K (set of customers) 

as shown in Figure 1. Variable ݕ௝  equals to 1 if facility j is opened and 0 otherwise. The cost associated with 

building facility j is 𝑓௝.  A quantity of ݔ௝௞ shows the amount transported from node j to node k  with costsݍ௝௞. 

 

 
Figure1. A Network Graph 

 

The deterministic network design problem as modified from Santoso et al. (2005) can be formulated as follows: 

Minimize ∑ 𝑓௝ݕ௝௝∈௃ + ∑ ௝௞ሺ௝,௞ሻ∈𝐴ݔ௝௞ݍ  

 

(1) 

 

Subject to:  ∑ ௝௞௝∈௃ݔ ൒ 𝑑௞ , ∀݇ ∈  ܭ

 

(2) 

∑ ௜௝௝∈௃ݔ ൑ 𝑠௜ , ∀ ݅ ∈  ܫ

 

(3) 

∑ ௜௝௜∈ூݔ − ∑ ௝௞௞∈௃ݔ = Ͳ, ∀݆ ∈  ܬ

 

(4) 

∑ ௝௞ݔ  ௞∈௄ ൑ 𝑀ݕ௝ , ∀݆ ∈  ܬ

 

௝ݕ (5) ∈ {Ͳ,ͳ}, ∀݆ ∈  ܬ

 
௝௞ݔ  ൒ Ͳ, ∀݆ ∈ ,ܬ ݇ ∈   ܭ

Equation (1) shows the objection function that is minimizing the sum of fixed costs of building facilities and 

transportation costs. Constraint (2) makes sure that the total inflow to customer j be greater or equal than its 

demand 𝑑௝.  In constraint (3), the total outflow from supplier i must not be greater than its supply 𝑠௜ . Constraint (4) 

I J K 
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requires that the total inflow equals the total outflow for each facilities in J.  Constraint (5) makes sure that fixed 

building costs of a facility are realized whenever there is an outflow of material from the facility.   

 

First, we model supply uncertainties at a facility ݆ ∈ ݅ as given in Figure 2.  Let us assume that supplies from ܬ ∈   ܫ

during a period of time are random variables having normal distributions with parameters  ሺߤ𝑆௜ , 𝜎𝑆௜ଶሻ, then the 

resulting supplies at facility j during a period of time are also following normal distributions with parameters  ሺߤ𝑆௝ , 𝜎𝑆௝ଶሻ, where:  ߤ𝑆௝ =  ∑ 𝑆௜௜∈ூߤ  and  𝜎𝑆௝ଶ = ∑ 𝜎𝑆௜ଶ௜∈ூ . 

 

 
Figure 2. Supply and Demand Models 

 

Consequently, we can also model the demand uncertainties at facility j as given in Figure 2.  Assuming that demands 

at customer ݇ ∈ ܭ  are following normal distributions with parameters  ሺߤ𝐷௞ , 𝜎𝐷௞ଶሻ , then the resulting demands 

experienced by facility ݆ ∈ 𝐹 also follow normal distributions with parameters ሺߤ𝐷௝ , 𝜎𝐷௝ଶሻ, where:  ߤ௝ =  ∑ 𝐷௞௞∈௄ߤ  

and  𝜎𝐷௝ଶ = ∑ 𝜎𝐷௞ଶ௞∈௄ . Now, if there are products transported from facility j to customer k, then demands accounted 

at facility j are only those coming from k where ݔ௝௞ > Ͳ . The same reasoning applied to products that are 

transported to facility j are coming only from s where ݔ௜௝ > Ͳ. For example, the average demand at facility j can 

then be formulated follows: ߤ௝ = ∑ 𝐷௞∀௞ \𝑥ೕೖ>଴ߤ  

 

The above equation is however still difficult to reformulate into a linear programming.  To solve such problem, we 

use a robust optimization approach using set of scenarios denoted by 𝑠 ∈ 𝑆 .  The set of scenarios contains both 

supply scenarios and demand scenarios.  Suppose that demands in node ݇ ∈  is realized as a scenario 𝑑௞𝑠 then we ܭ

can formulate a balance constraint as follows: ∑ ௝௞௝∈𝐹ݔ + ݅௞𝑠− − ݅௞𝑠+ = 𝑑௞𝑠 , ∀݇ ∈ ,ܭ 𝑠 ∈ S 

 

(6) 

 

where ݅௞𝑠− and ݅௞𝑠+ can be seen as unmet demands and excess inventory respectively which in turn can be penalized. 

Consequently, supposed that supply to facility ݆ ∈ ܬ  is also realized as a scenario ݌௝𝑠  then we can formulate a 

balance constraint at facility j as follows: 

௝𝑠݌  + 𝑢௝𝑠− − 𝑢௝𝑠+ = ∑ ௝௞௞∈𝐶ݔ , ∀݆ ∈ 𝐹, 𝑠 ∈ S 

 

(7) 

 

where 𝑢௝𝑠−  and 𝑢௝𝑠+  can be seen as lack of supplies and excess inventory at facility j which can be penalized too.  

 

Bear in mind that, controlled variables in network designs in this case are ݕ௝ ,   ∀݅ ∈ ,ܫ ݆ ∈ ௝௞ݔ and ܬ   ∀݆ ∈ ,ܬ ݇ ∈  It .ܭ

is also practical to use holding costs to penalize excess inventory both at facility j and customers (retailers) k denoted 

as ℎ௝  and ℎ௞.  Costs of lack of supplies at facility j and unmet demands at customer k, however, are very difficult to 

quantify.  Therefore, we introduce a parameter 𝜔 as a penalty to the objective functions.  The robust optimization 
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model is basically a multi objective programming, where we attempt to minimize the average costs, standard 

deviation costs, and penalties.     

 

Under scenario s, the total costs are formulated as: 𝜉𝑠 = ∑ 𝑓௝ݕ௝௝∈𝐹 +  ∑ ∑ ௝௞௞ݔ௝௞ݍ + ∑ ℎ௝𝑢௝𝑠+௝௝ +  ∑ ℎ௞݅௞𝑠+௞  

 

The resulting robust optimization model can be formulated as follows: 

 

Minimize ݖ = 𝜉̅ + ) ߣ ∑ 𝜋𝑠′ሺ𝜉𝑠′ − 𝜉̅ሻଶ 𝑠′∈Ω ) + 𝜔 ቌ∑ ቌ∑ 𝑢௝𝑠−௝ + ∑ ݅^݇𝑠−௞ ቍ𝑠 ቍ 

 

 

(8) 

Subject to 

 𝜉𝑠 = ∑ 𝑓௝ݕ௝௝ +   ∑ ∑ ௝௞௞ݔ௝௞ݍ + ∑ ℎ௝𝑢௝𝑠+௝௝ + ∑ ℎ௞݅௞𝑠+௞  

 

 (9) 

𝜉̅ = ∑ 𝜋𝑠𝜉𝑠𝑠  

 

(10) 

∑ ௝௞௝∈𝐹ݔ + ݅௞𝑠− − ݅௞𝑠+ = 𝑑௞𝑠 , ∀݇ ∈ ,ܭ ∀𝑠 ∈ 𝑆 

 

(11) 

௝𝑠݌ + 𝑢௝𝑠− − 𝑢௝𝑠+ = ∑ ௝௞௞∈௄ݔ , ∀݆ ∈ ,ܬ ∀𝑠 ∈ 𝑆 

 

(12) 

∑ ௝௞ݔ  ௞∈௄ ൑ 𝑀ݕ௝ , ∀݆ ∈ 𝐹 

 

௝ݕ (13) ∈ {Ͳ,ͳ}, ∀݆ ∈  ܬ

 
௝௞ݔ  ൒ Ͳ, ∀݆, ݇ 

 
 

where: 

Parameters and indices: 

 ݅ : Suppliers, ݅ ∈ ݆ ,Facilities : ݆ ܫ ∈ ݇ ,Customers : ݇ ܬ ∈ 𝑠 : Scenarios, 𝑠 ܭ ∈ S 𝑓௝ : Fixed costs of opening facility j ݍ௝௞ : Variable costs of transportation from supplier i to facility j or from facility j to customer k ℎ௝ : Holding costs at facility  or customer j 𝑑௞𝑠 : Demands of customer k under scenario s realizations ݌௝𝑠  : Supplies to facility j under scenario s realizations  

 

 

Decision Variables: ݕ௝ : Binary variables which equal to 1 if facility j is opened  ݔ௝௞  : Quantity transported from facility j to customer k 
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݅௞𝑠−  : Unmet demands at customer k under scenario s realizations ݅௞𝑠+  : Excess inventory at customer k under scenario s realizations 𝑢௝𝑠−  : Lack of supplies at facility j under scenario s realizations 𝑢௝𝑠+  : Excess inventory at facility j under scenario s realizations 
 

 

 

Equation (8) is the objective function minimizing total costs which consist of average costs, mean absolute deviation 

of costs, and mean unmet demands or lack of supplies. Constraints (9) compute the scenario costs which include the 

fixed and variable costs and holding costs while average cost is computed by Equation (10).  In Equation (11), 

inventory balance constraint is shown at the customer, while balance constraint in the facility is shown in Equation 

(12). Equation (13) makes sure that fixed costs are realized whenever there are products transported from facility j.  

 

Bear in mind that for simplicity, this formulation consists of only decision variables from facilities to customers, 

where supplies are considered as given even though they are limited and uncertain.  The model can naturally be 

extended to include decision variables from supplier to facilities.  

 

The realization of scenarios can be modeled as a triangular-like distribution where normal distribution is discretized 

using three numbers as shown in Figure 3. The scenarios are represented by ߤ − 𝜎, ,ߤ ߤ + 𝜎 each with probabilities 

0.16, 0.68, and 0.16 respectively. 

 

 
Figure 3. Scenario realizations 

 
To linearize the problem, we use mean absolute deviation instead of standard deviation of costs. We introduce 

variables 𝜃𝑠, 𝑠 ∈ 𝑆 to calculate the absolute deviation, i.e. 𝐴𝐷𝑠 = 𝜉𝑠 − 𝜉̅ + ʹ𝜃 

given that  

 𝜉𝑠 − 𝜉̅ + 𝜃 ൒ Ͳ (14) 

Constraint 14 is added to the above formulation to make sure that absolute deviations are correctly computed.  

 

 

3. An illustrative example 
As an illustrative example, we use the following problem where a network consists of 2 potential facilities and 2 

customers where the parameters are given in Table 1.   
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Figure 4. An illustrative example 

If each facility’s supply and customer’s demand is realized using 3 number of scenarios then the full combination of 

scenarios will be ͵4 = 8ͳ scenarios.  

Table 1 Illustrative parameters 

 Facility 1 Facility 2 Customer 1 Customer 2 

Average Demand   50 50 

Demand Standard Deviation   10 10 

Average Supply 100 100   

Supply Standar Deviation 20 40   

Holding costs 1 1 1 1 

Fixed costs 100 100   

 

As an illustrative, we use ߣ = ͳ and 𝜔 = ͳͲ to show the cost scenario realizations as depicted in Figure 5. It is 

shown that the costs are normally distributed.  The problem is modeled in AMPL (A mathematical Programming 

Language) and solved using CPLEX available at Neos Server (https://neos-server.org/).  
 

 
Figure 5. Scenario Cost Histogram 

 

The results are naturally depending on parameters ߣ and 𝜔 which show the decision maker’s attitude toward risks.  

The effect of parameter 𝜔 which is used to penalize unmet demands or supplies can be seen in Table 2. 

 
Table 2. The Effect of Unmet Demands and Supplies Penalties 

ߣ  = ͳ 𝜔 = 5 𝜔 = ͳͲ 𝜔 = 5Ͳ 𝜔 = ͳͲͲ 

Total cost 463 511 591 591 

Average Cost 399 399 570 570 

1 

2 

1 

2 

𝑑ଵ 

𝑑ଶ 

𝑝ଵ 

𝑝ଶ 
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ߣ = ͳ 𝜔 = 5 𝜔 = ͳͲ 𝜔 = 5Ͳ 𝜔 = ͳͲͲ 

Mean Cost Deviation  16.3 16 21.25 21.25 

Mean Unmet 

Demand/Supplies (unit) 

9.6 9.6 0 0 

 

The effect of parameter ߣ which is used to penalize mean deviation of costs can be seen in Table 3. 

 

Table 3. The Effect of Mean Deviation Penalties 

 𝜔 = ͳͲ ߣ = ͳ ߣ = ͳͲ ߣ = ͳͲͲ ߣ = ʹͲͲ 

Total cost 511 659 1020 1064 

Average Cost 399 399 410 390 

Mean Cost Deviation 16 16 1.1 0.3 

Mean Unmet 

Demand/Supplies (unit) 

9.6 9.6 50 60 

 

 

4. Conclusion and further research 
In this paper, we develop a robust optimization model to network designs taking into account both supply and 

demand uncertainties. As expected, the resulting solutions are depending on how decision makers view risks and 

their implications both to costs realization and unmet demands or supplies.  The total costs vary following a normal 

distribution where its variance depends on the risk parameters.  Using the same ߣ parameter, the mean cost deviation 

is larger with larger 𝜔 while the unmet demands and supplies is getting smaller.  Conversely, the results also show 

that when using the same 𝜔, the mean cost deviation is smaller with larger  ߣ .  The mean unmet demands/suppliers, 

however, is larger with larger  ߣ. 

 

In the future, we still have to investigate the model and its solution approach, in particular the effect of discretization 

of demand and supply distributions.  Furthermore, computational complexities of the problems still need to be 

investigated.  
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