Constructive Matheuristic Algorithms for Solving The
Vehicle Scheduling Problem For Public Transportation
With Multiple Depots

César Augusto Marín, Luis Miguel Escobar and Rubén Bolaños
R+D+i
Integra S.A.
Pereira, Risaralda 660003, Colombia
cmarin@integra.com.co, lescobar@integra.com.co, rbolanos@integra.com.co

John Willmer Escobar
Civil and Industrial Engineering Department
Javeriana University
Cali, Colombia
jwescobar@javerianacali.edu.co

Abstract
Described here are three hybrid constructive algorithms which combine heuristic and exact methods for
solving the scheduling of passenger’s vehicles for public transportation with multiple depots (MDVSP).
The first algorithm assigns each one of the scheduled trips to the depots, taking into account the
chronological order of the trips and the cost of serving each trip from the depot and then the itineraries are
built on a heuristic way (Concurrent Scheduler). The second method depicts a general attention sequence
with all the services. This combines two criteria: chronological order and Nearest Neighbor for the trips.
In order to establish the depot that serve the set of trips, the mathematical model of the Generalized
Assignment Problem is used. The third method assimilates graph theory to build itineraries of minimum
cost using models of general assignment and minimum flow in a network. In order to validate each one of
the algorithms, 90 cases were extracted from the literature, having between 2 and 5 depots, and 100 and
500 trips. The algorithms have response times ranging from 0.015 to 1.7 seconds approximately. The
focus of this work is to provide efficient methods in computation times for the real-time reprogramming
of vehicle itineraries. Primarily to ease the operation when there are contingencies in the Mass Transit
System of the Centro Occidente de Centro Metropolitana de Colombia AMCO, whose operation consists
of about 5000 trips daily. These algorithms have been applied successfully in our cohort of trips.

Keywords
Vehicle Scheduling Problem, heuristic, matheuristic, multi-depot, public transportation.

Acknowledgements
The authors would like to thank SENA (Servicio Nacional de Aprendizaje), Integra S.A and COLCIENCIAS.

Biographies
César Augusto Marín is Manager of the R+D+i area at Integra S.A, the operator of the massive transit system in
the city of Pereira, Colombia. Currently, he is finishing his Ph.D. in the Technological University of Pereira,
working problems oriented to Tactical and Operational Planning.

Luis Miguel Escobar is the Research Coordinator of Integra S.A, and Ph.D.(c) of the Technological University of
Pereira. Has experience working and implementing solutions for Operations Research problems such as Packing
Problems, Vehicle Routing Problems and Scheduling Problems.
Rubén Bolaños is currently the Development Coordinator of Integra S.A. Ph.D. student at the Technological University of Pereira, working Vehicle and Crew Scheduling Problems and Rostering for BRT (Bus Rapid Transit) operators.

John Willmer Escobar is currently a fulltime Professor of the Javeriana University. Expert on Operations Research problems.