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Abstract

Discharge times, tD, of sub-micron ultrafine and micron-size superfine powders from a circulating 
fluidized bed (CFB) with the cyclone upside stream were investigated using a Geldart A-C mixture of 
ultrafine and superfine Al(OH)3 powders and coarse FCC particles.  tD which refers to the time needed for 
complete depletion of the fine powders contents from the fluidizing system.
Variation of discharge times of ultrafines and superfines with the equilibrium water content of FCC 
particles was investigated at a 5 wt% maximum loading of ultrafines and superfines. The superfines

discharge times decreased noticeably using bed particles humidified with gas of higher (larger than 50%) 
relative humidity. Bed particles humidified using lower (35%) relative humidity showed very high 
discharge times at higher contents of fines. Relatively larger discharge times of the cohesive ultrafines 
were measured compared with those of the less cohesive superfines.

Key words: circulating fluidized bed; discharge times; equilibrium water content; ultrafine 
powders, superfine powders  

1. Introduction

Practical applications of Geldart-C powders (Geldart, 1973) are increasing widely due to their 
extreme specific surface area per unit volume. It is concluded that fine powders, <10µm, have 
strong adhesion and cohesion characteristics (Jacques, 2002). Motion of superfine powders of 
few microns and sub-micron ultrafine powders in fluids is rather difficult due to poor aeration 
(Bruni et al., 2007). They tend to form bridges, adhere to surfaces, form agglomerate, clumps and 
solid aggregates when flowing (Wang & Kwauk, 1998). However, cohesive fine powders still

exist in fluidized beds as individually dispersed particles. 

Extensive studies have been made on the cohesive forces and other various forces affecting 

fluidizing systems in presence of fine powders. Factors affecting formation of agglomerates, 

clumps and solid aggregates, such as the particles density, superficial gas velocity, etc. were 

presented by Chaouki et al. (1985). Interparticle adhesion forces were found to reduce the 

entrainment rate during fluidization of fine particles (Santana et al., 1999). Experiments studying 

effects of liquid bridge forces (Mc Laughlin & Rhodes, 2001) and magnetic forces (Rhodes et al., 
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2001) showed that changes of  the interparticle force directly affects transition of Geldart-B 

particles to A, and from Geldart-A to C (Molerus, 1982). Mechanical interlocking, local 

sintering, liquid bridging and electrostatic force might become important under certain 

circumstances   (Xu & Zhu, 2005; Castellanos, 2005). Furthermore, Since van der Waals force 

acts across a distance of 0.2–1 nm (Visser, 1989). Lauga et al. (1991) pointed out that only 

particles on the surfaces of agglomerates contribute to inter-agglomerate force. 

After repeated fluidization, ultrafne powders usually show improved fluidizability (Wang & 

Kwauk, 1998). The experimental results showed that the average agglomerate size decreases 

with increasing superficial gas velocity (Zhou & Shinohara, 2006). Thus, CFBs are strongly 

suggested to overcome the cohesiveness of the bed particles. But, higher gas velocities and 
larger interactions amongst particles and between particles and internal surfaces will result in an 
increase of triboelectrification. CFBs is also affected by the amount and size of the particles, 

especially fine powders (Chian et al., 2010). Presence of such fines will affect the performance 

of gas distributor as well as the bubble formation, activity and bubble expansion in bottom zone 

of the riser column in CFBs (Werther & Wein, 1994). The mass balance of fines and coarse 

particles flowing to the cyclone will control its efficiency (Trefz & Muschelknautz, 1993). Axial 

solids distribution and elutriation will also be altered (Colakyan & Levenspiel, 1984).      

Literature studies covering qualitative and quantitative analysis of CFBs in presence of ultrafine 

and superfine powders are not available and still incomplete, hence extended investigations are 
necessary (Abdelghany et al., 2014).  
The current study fluidizes a binary mixture of two types of Geldart-C cohesive 

powders in small fractions with the non-cohesive Geldart-A particles. This system 

results in an efficient gas-solid mixing caused by the turbulence promoter Geldart-

A particles. The objective of this work is to investigate the changes of the 
discharge times of fine powders at different equilibrium moisture contents of the 
bed particles. Discharge time refers to the time needed for all the fine contents in 
the CFB to be carried entirely out of the system.  

2. Experimental 

2.1. Experimental setup  

The CFB experimental setup is shown in Figure 1, where the riser column is an experimental 

2.0 m long transparent vinyl chloride column of 0.052 m internal diameter. A sintered metal 

plate (Mott Corp., 20 micron orifices, and open area of 40%) is located at the bottom of the riser 

in order to evenly distribute the air.  A 100 litre capacity damping chamber was placed on the 
bottom of the plenum chamber to improve reproducibility. A stainless steel cyclone, 2D2D type, 

was installed as a particle collector. A flexible vinyl chloride hose is used as a downcomer and 
connected at the bottom of the cyclone. Pre-humidified bag filters were used to collect fine 
powders discharged at the top of the cyclone.  
One column filled with silica gel and another column filled with Rashing rings and water, are 
used to control the relative humidity of the air feed stream. Two air flow meters (KI corp., 

FR2000 model, and range from 100 to 1400 litre/min) are used to measure the flow of dry and 

humid air.  
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The Fluid Catalytic Cracking, FCC particles, mean size 66 m are used as coarse particles and 
ultrafine and superfine Al(OH)3  powders (0.5 m and 8.0 m mean sizes, respectively) are used 
as fine powders.   

 

 
Fig. 1. Schematic diagram of experimental setup 

2.2. Experimental procedures  

Before experiments, FCC particles were humidified with air at different relative humidities for 
sufficiently long time to attain saturation and the results are shown in Table 1. 
 

Table 1 Equilibrium water contents of FCC particles at different air relative humidities. 
R.H. % Equilibrium moisture content, 

Weq.H2O [wtH2O/wtdry FCC] 
20.0 0.0380 

50.0 0.0610 

80.0 0.0670 

A semi-batch CFB was used to fluidize mixtures of fine powders and coarse particles at different 
loadings, mass percent, of fine powders in the bed. Certain fractions of fine powders were 
discharged entirely out of the bed with air then collected by a bag filter at different time 
intervals. Thus, loadings of fines in the bed were decreasing with time.  
It was confirmed that no FCC particles were carried out with air going out from the cyclone 
upside stream. Only fractions of fine Al(OH)3  powders were carried out of the CFB at any of 
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the experimental operating gas velocities. To prevent catalysts attrition, run time was limited to 
one hour. 
For maintaining good fluidization, a solid mixing vessel ('V' cone shaped model: CEN-MKII-
11-Armfield) was used to mix particles before experiments.  

2.3. Parameters and calculations  

Weight percent of fine powders in the bed is referred to as loading, X, and defined as 

                                     X = [Wfp / (Wcp + Wfp)] x 100                            (1)   

Where, Wfp and Wcp are the weights of fine powders and coarse particles in the bed, respectively. 
Wfp can be calculated using the difference between the initial weight of fines and the total weight 
of fines discharged from the system.  
The average discharge time of fine powders, tD, refers to the time required for the fines to be 

discharged entirely out of the bed, and it is calculated from Eqs. (1) and (2) as follows: 

                                  tD=Wfp / ŕD                                                                (2)   

The mass discharge rate of fine powders, ŕD, from the CFB per run is calculated as follows: 

                                 ŕD =Wdfp /  θR                                                            (3)   

where, Wdfp is the weight of fines discharged out from CFB per run and θR is the run time (10 

min). 

 The solid circulation rate of the binary particle mixture, RC is calculated as follows: 

                               RC, FCC= WEM / (A * θS)                                            (4) 

where, WEP is the weight of elutriated FCC particles collected in the bag filter (block 
15.a. in Fig. 1) per run. θS is the sampling period for FCC circulation rate measurements, 
which was fixed to 20 ~ 30 s.  

3. Results and discussions 

In the series of experiments, desirable starting loadings was limited to 5 wt% to avoid 

severe agglomeration. Thus, current study presents 2, 4 and 5wt% as typical examples at 1 

m/s maximum gas velocity to avoid attrition and loss of FCC particles with the cyclone 

upside stream. 
  

3.1. Selection of the suitable conditions for smooth fluidization 

Figure 2 shows the variation of the solid circulation rate, RC, FCC, at different water 

contents of the FCC particles in absence of fine powders at two different gas velocities. 

Solid circulation rates of FCC particles increased with increasing the weight of FCC 

particles safely up to 1.2 kg, where no FCC particles were noticed at the top of the 

cyclone. At larger weight of FCC particles, fluidization was not running smoothly and 
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larger fractions of FCC particles were discharged at the top of the cyclone which is not 

accepted as it directly changes the discharge rates of ultrafine and superfine aluminium 

hydroxide powders. For the current study 0.8 kg of FCC particles were used for the main 

study of measuring fine discharge rate, where no FCC particle were collected at the top 

of the cyclone. Besides, smooth fluidization were noticed irrespective of the fractions of 

fine powders in the bed.  

  
Fig. 2. Variation of the solid circulation rate of FCC particles, RC, FCC, with  

the weight of FCC particles in the bed at U= 0.8 m/s and U= 1.0 m/s 
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Fig. 3. Change of the cumulative weights of discharged ultrafine and superfine  

powders with time at different equilibrium moisture contents of the bed particles  

starting with X0= 2 wt% and X0= 4 wt% 

3.2. Evaluation of cumulative discharged fines with time 

Figure 3 shows a typical example of the changes of the cumulative discharged amounts of fines 
from CFB, Wcfp, for 0.5 µm ultrafine and 8.0 µm superfine powders at 1.0 m/s gas velocity and 
2 and 4 wt% starting loading of fine powders. Irrespective of the type of fine powders, the 
cumulative discharged weights of fines was found to increase with time and with the loading of 
fines, and therefore, their residual loading in the bed decreased, as shown in Fig. 3. However, 
discharged fractions of superfine powders increased with increasing the water contents of the 
FCC particles and these discharged superfines were relatively larger than the discharged 
fractions of ultrafines.  
At lower moisture water contents of FCC particles, accumulation of electrostatics charges in the 
bed was believed to prevail and results in strong cohesion and adhesion forces. Thus, for the two 
types of fines in this study, the amount of fines discharged noticeably decreased with decreasing 
moisture contents of FCC particles.  
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Fig. 4. Change of the average discharge time of ultrafine and superfine powders with their 

loading at different equilibrium water contents of FCC particles 

 
3.1. Evaluation of average discharge times, tD,  at different moisture contents 

Results for discharge rates of ultrafine and superfine powders presented elsewhere (Abdelghany 
et al., 2014), are used for evaluation of the average discharge times of fine powders. Changes of 
the average discharge times of ultrafine and superfine powders with loadings of fines at various 
humidification conditions is shown in Figure 4. The  average discharge  times  of  fine powders 
decreased  with  increasing  the  water  contents  of   the  bed  particles. In presence of superfine 
powders, the average discharge times were lower at the beginning and then increased with 
decreasing the loading of fines in the bed.  This was not the case using ultrafine powders, where, 
the average discharge times were almost the same, except two data point due to uncontrolled 
premixing. Irrespective of the loading of fines, the average discharge times for superfines were 
much smaller than ultrfines. Using a long distance focus microscope (Hatano et al., 1990), due to 
adhesion forces of the superfine powders, large flocculates of FCC were confirmed to produce 
for the gas-solid two-phase flow of a mixture of 70 μm FCC and 7 μm Al(OH)3. They concluded 
that concentration of fine powders directly affects the size of flocculates. At lower moisture 
contents of the bed particles, up to one third from the bottom of the riser was covered by layers 
of the naturally cohesive/adhesive ultrafine powders. Layers of fines were expected to form due 
to accumulation of static electrification. At larger moisture of bed particles, lower average 
discharge times were measured, especially for the individually dispersed superfine powders.  

 

4. Conclusions 

The fluidization quality of a binary Geldart A-C mixture in a CFB was studied by evaluating the 
average discharge times of fine powders at differed equilibrium water contents of FCC particles. 
Fluidization phenomenon improved using superfine powders which showed low average 
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discharge times than ultrafine cohesive powders using bed particles humidified of larger 
moisture contents. Bed particles humidified of lower water contents showed large average 
discharge times of superfine powders. Natural cohesion and adhesion properties of ultrafine 
powders were found to control fluidization quality rather than water contents of the bed 
particles.  
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