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Abstract 
 

Customer demand is a constantly changing variable that suppliers must be able to accommodate to stay in 

business.  Being able to properly assess the output of a process is key to determining capability.  The focus 

of this paper is to determine and improve the quality level of a headliner manufacturing line using statistical 

quality control tools. It will analyze observational data to determine whether the process is in control and 

measure the capability of the process to meet an increased demand.  QC tools such as control charts, analysis 

of variance (ANOVA) and Pareto analysis will be used as the means for collecting and analyzing data, 

measuring the results and then identifying root causes. These tools will then be used to identify how to 

improve the process to meet the demand. 
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1. Introduction 

 
Statistical quality control (SQC) tools were originally developed to evaluate process performance in manufacturing 

environments.  These techniques have since been expanded to measure more atypical subject matter such as advanced 

warning systems in vehicles (Liu and Ho, 2017).  Other divergent uses include evaluating the performance of Precise 

Point Positioning used for GPS navigation systems (Cheng, et. al., 2017).  SQC is being implemented in the health 

profession as well.  Oncology researchers have utilized SQC tools as a method to quantify quality of life in cancer 

trials (Hamel, et. al., 2017).  It has also been used to improve neonatal care in hospitals (Gupta and Kaplan, 2017).   

Quality control (QC) refers to the practice of monitoring a process to ensure the product is meeting requirements as 

well as detect and reduce any variance in the product or process.  QC utilizes many tools designed to help gather and 

analyze data with the goal of improving operational efficiency in a system.  Variance is a value that is studied closely 

in QC because variance is a good indicator of poor quality.  To measure variance in a process, statistical tools are 

applied frequently for quality control purposes (Montgomery, 2013). 

A headliner for a vehicle line (Fig. 1) is built using both a batch and sequence process.  The side facing down in Fig. 

1 is called the A surface.  This is the side that can be seen when you look up inside a vehicle.  The other side is referred 

to as the C surface.  This is the side that connects to the roof of the car and contains all the wire harnesses and 

connections.  Stiffeners and head impact countermeasures (HIC) are installed on the C surface by robots or automatic 

machines in batch.  Customer use items such as grab handles, overhead consoles and dome lamps are applied by 

manual glue process along with wire harnesses and other unseen items.   
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Figure 1. Exploded assembly of headliner. 

In this paper, we will look at this build line using statistical analysis tools to determine whether this process is in 

control and how it can be improved to meet customer demand.  We will utilize QC tools for a statistical analysis of 

the process and its yield. 

2. Methodology 

 
Sample data for 31 days of production was taken to analyze the performance of the line. We will utilize several QC 

tools such as control charts, a process capability study and ANOVA analysis to diagnose this build line (flow chart in 

Fig. 2). The data will be evaluated to determine whether the headliner process can meet and increase in the demand. 

If necessary, we will also use Pareto analysis to determine the root cause of the failure and give recommendations.  

 

 
Figure 2. Flow chart of methodology used in this case study. 

 
2.1. Control Chart 
Control charts utilize mean variance data to determine a lower control limit (LCL) and upper control limit (UCL) for 

a set of data.  Sample process data is then plotted against these limits.  Multiple data points outside of these control 
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limits indicates an out-of-control condition of the process.  If analysis of the control chart indicates that the process is 

currently under control, then there is a decent chance that no corrections or changes to process control parameters are 

needed or desired (Montgomery, 2013).  

 

There are 2 main types of control charts: characteristic and attribute.  For the purpose of this case study, we will be 

using attribute chart which tracks the amount of non-conforming parts if the quality data is qualitative rather than 

quantitative (Aslam et. al., 2016).  In addition, data from the process can be used to predict the future performance of 

the process. If the chart indicates that the monitored process is not in control, analysis of the chart can help determine 

the sources of variation. 

 

2.2.  Capability Study 
The process capability is a measurable property of a process to the specification, expressed as a process capability 

index (Pal, 2011). Again, we will be utilizing attribute data, so this capability study will include:  

 

1) finding the current sigma level of the line, and  

2) comparing to the required sigma level to meet the increased rate 

 

The sigma level is a value used to convey the overall quality of a process.  It is converted from a value of parts per 

million (ppm) defective in a sample either using an equation or extrapolating from a sigma conversion table such as 

Table 1 below (Swinney).  The million opportunities that define this number represent each opportunity for a defect, 

not just each part.  One part may have several different opportunities for a defect (Montgomery, 2013). The number 

of defects per million opportunities (DPMO) corresponds to a sigma level indicating the overall quality of the process. 

 
Table 1. Sigma level performance table (Swinney) 

Sigma Level Defects Per Million Opportunities (DPMO) 

1 690,000 

2 308,537 

3 66,807 

4 6,210 

5 233 

6 3.4 

 

As shown in the figure, a sigma level of 1 indicates an inefficient process producing 690,000 defects per 

million opportunities, or a defect rate of 69%.  Whereas a sigma level of 6 indicates a high-quality process 

producing only 3.4 defects per million opportunities, or a defect rate of 0.00034%.  

 

2.3. ANOVA Analysis 

Analysis of variance (ANOVA) is used to analyze the differences within and between groups of data typically to 

determine the cause of variance in a process (Popescu, et. al., 2016). It is also used to determine the effect of individual 

parameters on results (Nandagopal and Kailasanathan, 2016).  This method uses a hypothesis test to determine whether 

there is a statistical difference in the mean data from multiple groups. The null hypothesis assumes that all factors 

have equal significance. Tests to disregard this hypothesis assume 1 or more factors has more of an effect on the data 

(Montgomery, 2013).   

 

If the null hypothesis is rejected, then it can be assumed that 1 of the means is different from the others (Loman, 2000).  

However, it does not tell us which mean is different from the others.  In this case, a Tukey HSD test would need to be 

conducted.  The Tukey HSD (Honestly Significantly Different) test allows the user to test each group mean against 

each other group mean using the standard t-test formula below (Urdan, 2005). The equation for the Tukey test is 

shown on the next page. 
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𝐻𝑆𝐷 =
𝑋̅1 − 𝑋2

̅̅ ̅

𝑠𝑋̅

 

 

𝑤ℎ𝑒𝑟𝑒 𝑠𝑋 ̅ = √
𝑀𝑆𝑒

𝑛𝑔

 

 

𝑎𝑛𝑑 𝑛𝑔 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑔𝑟𝑜𝑢𝑝 

 

This calculates the difference in the means of the 2 groups over the standard error 𝑠𝑋̅.  The standard error is defined 

by taking the square root of the mean squares error 𝑀𝑆𝑒 over the number of cases in each group.  The user would then 

compare the observed Tukey value for each group with a critical value, Q, found in a Q value table compared to a 

0.05 significance level (Urdan, 2005). 

 

2.4. Pareto Analysis 

Pareto analysis is used in cases where multiple defects are seen to identify those that most need to be addressed to 

resolve most of the problems (Pal, 2011). This method typically utilizes a Pareto chart, which gives a distribution of 

the different types of defects based on how often they occur (Montgomery, 2013).  Once the most frequent causes of 

defects are identified, it can be determined if a) the most frequent defects are truly the most important and b) how to 

begin resolving the line’s issues. 

 

3. Problem Description 

 
The headliner line has been experiencing a high number of defects resulting in scrapped parts over the last year.  The 

build for this line is scheduled to increase from 48 parts per shift to 98 parts per shift.  There is concern that, at the 

current defect rate, the line is incapable of meeting the new demand.  The purpose of this research and experiment is 

to use quality control tools to determine if the line is capable of building 98 parts per shift at its current defect rate and 

if not, what can be changed to make it capable. 

 
4. Data Analysis 
The defects produced by this subassembly process are not quantitative, so all data collected was attribute data and 

calculations were made using a binary setup. Only non-conformances that caused parts to be scrapped were 

documented for the purposes of this case study.  Reworked parts were not taken into account.  Data was collected 

from 31 days of production covering two 8-hour shifts. 

 

4.1. Sample Data 
To perform the analysis, sample data of 2601 production parts was taken.  Because headliner is a soft trim piece, most 

reasons for scrapping a part are empirical so we used attribute data, basically a conforming or nonconforming system, 

to tally results.  The data is given in Table 2 on the next page. 
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Table 2. Attribute data for 31 days of production 

Sample 
# Build Scrap 

Sample 
# Build Scrap 

1 69 10 17 72 14 

2 77 8 18 85 38 

3 84 12 19 82 0 

4 70 39 20 91 0 

5 117 30 21 101 0 

6 83 0 22 33 0 

7 81 21 23 78 35 

8 81 7 24 81 8 

9 74 0 25 87 0 

10 96 25 26 87 53 

11 86 0 27 88 0 

12 82 34 28 66 27 

13 95 28 29 79 27 

14 89 10 30 104 0 

15 96 8 31 84 14 

16 103 13       

 
The data collected gives a basic overview of the production line and its current performance.  This process builds an 

average of 83.9 parts per day with a current defect rate of 0.1772. 

 
4.2. Control Chart 
The first test was to determine whether the process was in control.  To do this, we take the sample scrap data from 

Table 2 above.  As stated, a conforming or nonconforming classification system will be used for this data instead of 

numerical due to the nature of these parts.  Because of this, a np control chart is best for this exercise. The equations 

below give the lower control limit (LCL) and upper control limits (UCL) as well as the centerline of the control chart 

where n equals the number of trials observed and 𝑝̅ is the sample mean of the defective parts. 

 

 𝐿𝐶𝐿 = 𝑛𝑝̅ − 3√𝑛𝑝̅(1 − 𝑝̅) = 4.39 

 

 

 𝐶𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 = 𝑛𝑝̅ = 14.89 

 

 

 𝑈𝐶𝐿 = 𝑛𝑝̅ + 3√𝑛𝑝̅(1 − 𝑝̅) = 25.39  

   

Because the data samples tracked full days of production, each sample was a different size.  An average sample size 

was calculated to determine limits for the control chart shown in Fig. 3 on the next page. 
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Figure 3. Control chart using average sample size. 

 

The chart clearly shows an out-of-control process with 19 points outside of the control limits.  However, because there 

are several plot points near the control limits, the samples using variable-width limits are also charted in Fig. 4 below. 
 

 
Figure 4. Control chart using variable sample sizes to determine limits 

 

Variable sample sizes given by the builds of each day result in moving control limits.  Despite this, the variable-width 

chart shows with certainty that the process is out of control with 16 of the 31 points outside of these limits.  So, it is 

already apparent that improvements will be needed regardless of whether we can prove capability.  

 

4.3. Process Capability 
The gross capability of the line with 0 defects is 14 parts per shift.  Based on this, we will determine the highest defect 

rate possible while still meeting the build requirements.  Since the required net build rate is 98 parts per shift, the 

necessary sigma level of the line can be found using the calculations below.  In an 8-hour shift, there are 2 10-minute 

breaks, resulting in 7.6 hours of actual work time. 
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Tests are performed with unequal sample sizes.
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𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐵𝑢𝑖𝑙𝑑 𝑅𝑎𝑡𝑒 = (
98 𝑝𝑎𝑟𝑡𝑠

7.6 ℎ𝑜𝑢𝑟𝑠
) = 12.8947 𝐽𝑃𝐻 

 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐷𝑒𝑓𝑒𝑐𝑡 𝑅𝑎𝑡𝑒 =
14 − 12.8947

14
= 0.0789 

 
This required defect rate computes to a required defects per million opportunities (DPMO) value of 78,947.37.  This 

number is typically calculated using the equation below.   

 

 
𝐷𝑃𝑀𝑂 =

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑠

# 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 ∗ # 𝑜𝑓 𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠
∗ 106 

 

 

 
However, we backed into the required DPMO value by using the knowledge of the line’s raw capability and the 

calculations on the previous page. This calculated DPMO converts to a sigma level of 2.912. 

 

Next, we calculate the current sigma level based on samples of daily builds from Table 2 from pg. 4.  This data gives 

a sample defect rate of 0.1772 and a DPMO of 177,239.5 using the given equations.  This means the build line is 

currently at a sigma level of 2.426 which is less than the necessary sigma level.  At the current defect rate, the process 

is not capable of meeting the required demand. 

 
4.4. Analysis of Variance (ANOVA) 
There are 4 main types of headliners.  Base is the basic headliner without special features.  Moon is the headliner to 

accommodate cars with a moonroof.  Lyric is the material used for the basic package in the vehicle.  Alcantera is a far 

more expensive velvet-like material.  The first priority was to see if the style of the headliner had any impact on the 

defect rate.  For this, year-to-date data for the headliner build was used to get a large enough sample of each type.  

Table 3 below shows the data for each style. 

 
Table 3. Scrap data per headliner style 

TYPE BUILD SCRAP 

MOON 9749 1704 

BASE 3194 469 

LYRIC 9051 1836 

ALCANTERA 3892 337 

 
The most common part built is the lyric material with a moon roof opening.  This combination, as expected given 

the high usage, also produces the highest amount of scrap parts.  However, the information sought here is whether 

any of the defect rates per type are statistically dissimilar to the remaining types.  The following hypothesis test was 

used to determine significance where τi represents the relevant factors. 

 
𝐻0: 𝜏𝑀𝑂𝑂𝑁 = 𝜏𝐵𝐴𝑆𝐸 = 𝜏𝐿𝑌𝑅𝐼𝐶 = 𝜏𝐴𝐿𝐶 = 0 

 

𝐻1:𝜏𝑖 ≠ 0 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝑓𝑎𝑐𝑡𝑜𝑟 

 
Using a 95% confidence interval, the level of significance (α) is 0.05.  The p-value of the variance determined using 

Minitab is 0.741 (Table 4). 
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Table 4. Minitab output of ANOVA analysis 

Source DF Adj SS Adj MS F-Value P-Value 

Factor 3 0.1750 0.05833 0.42 0.741 

Error 196 27.3800 0.13969       

Total 199 27.5550          

 
As stated previously, this case study is using attribute data so the scrap data from Table 3 above was entered in Minitab 

in a binary format, with “1” meaning good and “0” meaning scrap.  Each cell represented a separate trial.  Since the 

p-value is greater than 0.05, headliner type has no significant effect on the defect rate.  

 

5. Optimization 
 

This study determined that the process was not capable of meeting the 98 parts per shift requirement.  Based on the 

sigma level, the defect rate needs to decrease by 0.0983.  For optimization, we looked for methods to improve the 

defect rate using Pareto analysis.  This allows us to see which type of defects are causing the most scrap and allows 

us to focus our efforts to improve the process. 

 
5.1. Pareto Analysis 
To determine the problems that can be confronted first, a Pareto analysis was completed of the various reasons for 

scrapping headliners.  Fig. 5 shows the breakdown. 

 

 
Figure 5. Pareto analysis of defects causing headliner scrap 

 
The Pareto chart above shows that the largest issue causing scrap is glue on the surface of the substrate accounting for 

31% of defects.  Glue is applied to the headliner at several different points on the line, both robotically and manually.  

After speaking with the quality team, this issue comes about mostly from the manual processes when applying the 

wire harness and noise, harshness and vibration (NVH) pads. 

 
To apply these pads, the operators use handheld glue guns and follow laser lines projected onto the headliner from 

above the table to guide them as to where to lay the glue.  This setup is shown in Fig. 6 on the next page. 
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Figure 6. Wire harness installation table in headliner line 

 

The issue arises once the trigger on the glue gun is released.  The flow stops but strings of the glue just laid can remain 

adhered to the glue still inside the gun nozzle.  This creates thin strands of glue smaller than a millimeter that end up 

on the headliner.  Because this glue application happens on the C surface (unseen side) of the headliner, most of these 

glue strands end up where no customer will see them.  But there are multiple holes and openings in the headliner that 

allow the glue to end up on the A surface (visible side) which ends up being scrap. 

   

If this problem can be solved, perhaps by utilizing temporary shields for the parts, it would reduce the defect rate to 

0.1158.  This is certainly better, but it is not enough to meet the demand and only takes the process to a sigma level 

of 2.696.  So, we will need to look at a secondary issue as well.  

 
Referring back to the Pareto chart in Fig. 5, the next highest issue is the rear retainers.  Specifically, the rear retainers 

being installed out of location tolerance.  The retainers are installed automatically by a machine which places them 

using a nest.  This substrate material for the headliner is placed into this machine using a 2-way and 4-way locator.  

The retainers end up out of location when the part is not properly placed onto these locators.  We can eliminate this 

issue by adding a proximity (or prox) sensor to detect whether the part is fully located onto the 2-way and 4-way. 

 

To combat the problem, a sensor was added to the nest to ensure the headliner substrate is properly placed in the 

machine.  We were unable to find a shielding strategy that prevented glue leaking onto the A surface while still 

allowing for proper glue appliance, but we were able to find a cleaning solution that would adequately take the glue 

off of the substrate material without harming the A surface cloth.  After these modifications, we monitored the scrap 

data for another 300 samples.  With this data, we discovered that solving the rear retainer issue solved a few other 

issues causing scrap.  The alignment issues with the rear mic, rear dual sensor and driver mic from the Pareto chart 

above are no longer significant problems.  With these 2 changes, we were able to reduce our scrap rate to 0.0867 

yielding a sigma level of 2.86. 

 

5.2. Further Suggested Work 
The above adjustments to the line improve the scrap rate but still falls below the required sigma level of 2.912.  To 

meet the required demand, we need to eliminate the next cause in the Pareto analysis which would yield a scrap rate 

of 0.0722 and a sigma level of 2.96 all other factors ignored.  This next cause is actually counted against us as a 

supplier instead of something that happens on our line.  The stuffers fall of the headliner in transit or at any point 

between our line and the customer line and the entire headliner gets scrapped as it is unusable.   

 

Stuffers are foam blocks with adhesive backing that are applied to the C surface of the headliner to aid in proper 

installation of the headliner to the vehicle.  They also help reduce noise and vibrations in the cabin.  If missing, they 

can interfere with the connections of the wire harnesses in the vehicle or the fasteners that adhere the headliner to the 

steel roof of the car.  A proposed solution to this issue is to have the supplier remove the adhesive backing from these 

parts and they would simply be applied using the same glue we use to apply the wire harness, HICs and NVH pads.  

Not only would this be of minimal cost to the company but it would also reduce the piece price for these parts. 
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6. Cost Savings 

 
The cost of scrapping just 1 headliner can cost as much as $493.01.  Extrapolating the year-to-date scrap data, the 

current defect rate is costing the company on average $958,647.80 per year.  The alcantera substrate material alone 

costs $438.76 to scrap.  In a worse-case scenario analysis, the company could be losing over $1 million a year in scrap.  

By increasing our sigma level from 2.436 to the necessary 2.912, we could save at minimum $526,024 per year.  This 

is savings is further explained in Table 5 below. 

 

Table 5. Yearly cost savings achieved by meeting goal Sigma level 

Headliner 

Type 

Average Scrap Cost 

per Part 

Previous Scrap Cost per 

Year 

Current Scrap Cost 

per Year 

Goal Scrap Cost per 

Year 

Alcantera $472.43  $578,635.29   $283,113.32   $257,642.91  

Lyric $132.97  $380,012.52   $185,931.63   $169,204.22  

Total   $958,647.80   $469,044.95   $426,847.13  

 

As stated, Table 5 above shows the cost savings associated with improving this process to our goal scrap rate.  The 

lyric headliner is 70% of the take rate for the total yearly build.  It also cost $340 less to scrap.  The cost for alcantera 

vs. lyric headliner scrap is broken out due to the significant difference in cost.  Reducing the scrap rate the goal of 

0.789 would save an average of $538,800.67 a year based on the average take rates of lyric and alcantera and the 

current build volume of 48 parts per shift. 

 

7. Conclusion 

 
Using the statistical analysis tools, we were able to determine that the headliner process is highly out of control. More 

importantly, it is incapable of meeting the newly increased demand at its current scrap rate.  The increased demand 

requires a sigma performance level of 2.912.  The current process misses this performance by about 10 parts per shift.  

In manufacturing, you must above all be able to meet the demand of the customer.  It is also necessary keep the scrap 

rate low enough so that costs are not paid out of pocket.  Currently, this process is unable to do either.  The company 

is losing an average of more than $950,000 a year due to scrap.  To improve the line’s yield, we made modifications 

to the process to achieve significant improvements to the process in multiple areas as identified in the Pareto analysis.  

However, there will still need to be changes made to reach the necessary quality level.  It is unlikely that we will 

eliminate 100% of the defects mentioned even with error-proofing so further analysis into the defect causes will need 

to be done to decrease scrap to a reasonable level for the line. 
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