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Abstract 

Sequencing and scheduling the surgeries in operating rooms (ORs) can be a very important problem since 
(i) the duration of each surgery can be uncertain, (ii) surgeries are a great source of revenue and a huge 
source of cost for the hospitals because doctors, OR staff, and surgery equipment are very expensive 
resources, and (iii) the satisfaction of patients and minimizing their waiting time is also a very important 
criterion. Solving this problem can reduce the costs and increase the satisfaction of patients significantly, 
but at the same time it is very hard to drive the solution mathematically. Even the sequencing sub-
problem can be challenging if the number of surgeries are large. There is no known tractable optimal 
solution to this problem and in practice, mostly a heuristic policy which orders surgeries based on 
increasing duration variances, i.e. the surgery with the smaller variance is scheduled earlier, is applied. 
We propose a simple heuristic policy for the sequencing of the surgeries based on the Newsvendor cost, 
and analyze it using a hospital data set as a case study. We show that this heuristic policy outperforms the 
ordering based on variance since it takes the asymmetry of waiting and idle costs into account. For the 
cases where the difference between the idle and waiting cost is large, which is the case in surgery 
sequencing, this approach achieves a better improvement in the total expected cost.  

Keywords 
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1. Introduction 

Scheduling and sequencing jobs with uncertain time duration of services has been a challenging problem in 
operation research (e.g. Wang 1997, Panwar 1999, Pinedo 2005). There are different applications for the sequencing 

and scheduling and one of the common applications is the surgery scheduling (e.g. Denton 2007, Weiss 1990, 
Denton 2003, Wachtel 2009). Operation rooms (ORs) are the main sources of revenue for the hospitals and on the 
other hand the main sources of costs since the surgery equipment and staffs are very expensive resources. There are 

two different types of surgeries, outpatient and inpatient. In the inpatient surgery case, the patient has been already 
hospitalized and has an assigned room to stay the night before the surgery or after the surgery for longer recovery 

duration. On the other hand, in the outpatient surgery case, the patient doesn’t need to be hospitalized and arrives to 
the hospital a short time before the surgery and leaves the hospital the same day after a short recovery. Furthermore, 
some procedures may need a deterministic or predictable time but some may take a significantly uncertain time to be 

served. The scheduling of the appointments must provide both the order of the patients and the exact appointment 
time for each patient considering different types of cost.  

Assume that we have N patients and we should assign the ordering of the patients and the appointment times for 
their arrival to the hospital to minimize the total expected cost. There are three different sources of the cost: (i) idle 
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cost: it occurs when the resource, e.g., OR, is under-utilized, (ii) waiting cost: it occurs when a patient arrives on-
time but the resource is still busy serving the previous patient, and (iii) overtime cost: it occurs when the resource, 

e.g., doctor, has to serve after the shift time. An example of surgery scheduling for 𝑁 =  ͵ is shown in Fig.1. 

 

Fig. 1. Scheduling schema for an example of 3 patients; ݐ௜: scheduled time for patient 𝑝௜, ௜ܶ: time of start surgery i, ݔ௣೔ : the 

duration of surgery for patient 𝑝௜, tend: shift end time 

The scheduling of surgeries can be very challenging since the uncertainty of surgery durations is significant. Even 

the sequencing sub-problem is challenging enough that finding the optimal sequencing for 𝑁 >  ʹ surgeries with 

uncertain surgery durations is not known up to now. For a simpler case of 𝑁 =  ʹ with zero overtime cost the 
optimal policy is known and special cases where some heuristics are equal to the optimal policy are given in Weiss 

1990. Instead there are works in literature proposing heuristic policies on how to order the surgeries (e.g. Denton 
2007). A heuristic policy based on the variance of the surgery durations is proposed in Denton 2007. In their 
approach, the surgery with the lower variance should be scheduled earlier (we call it VAR ordering). The authors 

show that this ordering can substantially reduce the total cost and illustrate this with a case study on a real data set 
from a hospital and comparing this heuristic approach with the actual scheduling in that hospital. 

In some hospitals, another simple scheduling is applied, in which patients are asked to come in the morning and 
have the operations in a row (we call it No-Idle (NI) ordering). In this case, the idle costs are zero but the waiting 
costs are large. In this paper, we propose a different heuristic based on Newsvendor (NV) cost ordering that can 

outperform the VAR and NI sequencings. We illustrate this with the results of a case study that uses a hospital data 
(which was obtained with permission and anonymized) to compare our proposed heuristic policy with those two 

common heuristics. The idea of NV sequencing comes from the structure of the cost function in the surgery 
sequencing problem for only 2 operations which is equivalent to the Newsvendor problem which balances the trade-
off between over-utilization (waiting) and under-utilization (idle) costs (e.g. Arrow 1951, Mansourifard 2017). Our 

NV heuristic policy is inspired by this structure and applied to more than only 2 surgeries. 

Our contribution to the surgery sequencing literature is that we propose a heuristic approach which takes the 

asymmetry between the waiting cost and the idle cost into account in finding the orderings. For surgery sequencing 
application since the difference between the waiting and idle cost is noticeable, the improvement of our heuristic 

policy (based on the Newsvendor costs) can be significant in comparison to the variance ordering, as demonstrated 
with analyzing a real data set from a hospital.  

2. Related Literature 

In general, the sequencing of customers with uncertain time duration of services is studied in the literature (e.g. 

Wang 1997, Panwar 1999, Pinedo 2005). There are different applications for the sequencing and scheduling, such as 
scheduling arrivals of cargo ships at a seaport (Sabria 1989), the arrival of parts on the shop floor (Wang 1993), and 

the sequencing of the appointments in an outpatient medical center (e.g. Denton 2010, Deng 2015, Bam 2015, Riise 
2016). Cardoen 2010 and Ahmadi-Javid 2017 present comprehensive surveys of different models and solution 
approaches in surgery planning and scheduling. Finding the optimal solution for the sequencing and scheduling of 

surgeries is very challenging. In Jafarnia-Jahromi 2017, it is proved that the optimal sequencing problem is non-
indexable, i.e., neither the variance, nor any other such index can be used to determine the optimal sequence in 

which to schedule jobs. For the simple case of N = 2 and zero overtime cost the total cost can be formulated 
mathematically and under some conditions, the variance ordering is the optimal (Weiss 1990). But for larger number 
of surgeries, the problem is too complex and there are works in the literature proposing non-optimal heuristic 
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approaches on how to order the surgeries (Denton 2007, Gul 2015). Among them, the heuristic policy based on the 
variance of the surgery durations proposed in Denton 2007. In Kong 2016, it is shown that the optimality of the 
VAR ordering depends on two important factors: (i) the number of patients in the system, and (ii) the shape of 

service time distributions. They exploit the insights obtained from analytical models to construct counterexamples 
showing that the VAR ordering is not optimal. In this paper, we also show counterexamples, but we propose a 

heuristic approach with a better performance, especially when idle cost and waiting cost are not balanced.  

3. Problem Formulation 

The surgery sequencing and scheduling problem contains two sub-problems, finding the optimal order of the 

surgeries (sequencing) and the optimal appointment times (scheduling). To formulate these problems, let assume, in 

a day, we have to schedule surgeries for 𝑁 patients ݅ ∈ {ͳ, … , 𝑁}, and each surgery takes different duration to be 

done. The “actual” surgery duration of patient ݅ ∈ {ͳ, … , 𝑁} is indicated by ݔ௜ which is a random variable with a 

distribution ௫݂೔ሺݔ௜ሻ and a surgery ordering is given by the sequence of the patients 𝑝ଵ , … , 𝑝𝑁 ∈ {ͳ, … , 𝑁} where 𝑝௝ is 

the ݆-th patient in the surgery order. Our goal is to minimize the total expected cost by finding the optimum schedule 

(time appointment of surgeries) for each of the N! (N-factorial) possible surgery sequences.  

To solve this problem, we search for the best appointment time schedules for each surgery ordering (one of N! 

possibilities) and compute the total expected cost (including all waiting cost, idle cost and overtime cost) with the 
expectation over the joint probability distribution of the surgeries durations. And then, we pick the ordering which 

achieves the minimum cost among all possible 𝑁! orderings. Assume that the ݆-th surgery will be scheduled for time ݐ௝ as shown in Fig.1 as an example. The actual start time of the ݆-th surgery (which is affected by the delays of the 

previous surgeries) is denoted by ௝ܶ which equals to:                                     

௝ܶ = max ሺݐ௝, ௝ܶ−ଵ +  ௣௝ሻ                   (1)ݔ

We indicate the cost units as ܿ௪, ܿ௟, ܿ௢, for the waiting cost, idle cost and overtime cost, respectively. Thus, the 
optimization problem is given by: 

min௣1,…,௣𝑁∈{ଵ,…,𝑁}    min௧1,…,௧𝑁 𝔼 [∑ ܿ௪ ቀ ௝ܶ + − ௣ೕݔ ௝+ଵቁ+𝑁ݐ
௝=ଵ + ܿ௟ ቀ ௝ܶ+ଵ − ௝ܶ − +௣ೕ ቁݔ + ܿ௢ ቀ ௝ܶ + − ௣ೕݔ  ,[+௘௡ௗቁݐ

.ݏ .ݐ ଵݐ = Ͳ, ௝ݐ ൒  ௝−ଵݐ

௝ܶ = max ቀݐ௝, ௝ܶ−ଵ + ݆∀  ௣ೕ ቁݔ = ʹ, … , 𝑁           ሺʹሻ 

where ݐ௘௡ௗ is the shift end time (which is usually 8 hours) and ሺݕሻ+ = ,ݕሺݔܽ݉ Ͳሻ. In this equation, the first, second, 
and last terms correspond to the waiting, idle, and overtime cost respectively. Moreover, the inner “min” is to find 
the optimum schedule and the outer “min” refers to the finding the best ordering.  

The problem in Eq. (2) is a stochastic mixed-integer program since finding the best order is equivalent to finding 

binary variables indicating which surgery must be served right after which surgery and the appointment times are 
real variables. If we assume that the orders are fixed priori, there are some proposed approximation algorithms to 

find the best time schedules (Denton 2003, Gose 2016). Now if we relax the assumption of having a fixed order a 
priori, we get a combination of stochastic and combinatorial variables which make the problem in Eq. (2) very 

difficult to solve, specially for large number of surgeries since there are 𝑁! possible orders. 

4. Newsvendor Cost Function 

First, we consider the case of 𝑁 =  ʹ surgeries with zero overtime cost. For this simple case, the optimal cost 
function equals to the Newsvendor cost, denoted by: 𝐶௜ሺݔ௜ , 𝜏ଵሻ = ܿ௪ሺݔ௜ − 𝜏ଵሻ+ + ܿ௟ሺ𝜏ଵ − ,  +௜ሻݔ ݅ = ͳ,ʹ            ሺ͵ሻ 

where ݔ௜ is the actual duration of the surgery of the patient ݅ and 𝜏ଵ is the assigned duration for this surgery which 

equals to the scheduled time for the second surgery minus the starting time of the first surgery which is 0. Thus, the 
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optimal value of 𝜏ଵ can be obtained from the solution to 𝐶௜′ = ݉݅݊𝜏1𝔼௫೔[𝐶௜ሺݔ௜ , 𝜏ଵሻ] for ݅ = ͳ,ʹ, and the optimal 

ordering 𝑝ଵ∗, 𝑝ଶ∗ can be derived as 𝑝ଵ∗=arg ݉݅݊௜=ଵ,ଶ 𝐶௜′ and 𝑝ଶ∗=arg ݉ܽݔ௜=ଵ,ଶ 𝐶௜′ . Thus, based on the Newsvendor structure 

of the cost functions, we find the best schedule as: 𝜏ଵ∗ = 𝐹௫𝑝1∗−ଵ ( ܿ௪ܿ௪ + ܿ௟)            ሺͶሻ 

which indicates the NV ordering is optimal for this simple case. Note that the total expected cost and the optimal 
ordering are dependent on only the first surgery since the only possible costs are the idle and waiting costs caused by 
the first surgery, thus, the second surgery will not contribute in the total expected cost. In Weiss 1990, this simple 

case is discussed in more detail and it is shown that when a convex ordering (Gupta 2010) exists between the 
distribution of the surgery durations, VAR ordering is equivalent to NV ordering. 

5. Heuristic Ordering Policies 

5.1 Variance (VAR) Ordering 

One of the most common ordering heuristics that is used in practice is VAR ordering (Denton 2007). In this 
approach, the surgeries are ordered based on the lowest to highest variance of their durations. We will compare our 

proposed heuristic with this one. 

5.2 Proposed NewsVendor (NV) Ordering 

Inspired by the observations that VAR ordering doesn’t take the asymmetry (un-balance) on waiting and idle cost 
units into account, we present a simple heuristic based on the Newsvendor cost function. In this heuristic approach, 

for a surgery ݅ 𝜖{ͳ, … , 𝑁}, we calculate the optimal expected cost for the scenario where there is only “one” other 
surgery to be done after that surgery. This optimal expected cost equals to: min𝜏೔ 𝐶𝑖̅ ሺ𝜏௜ሻ = ∫ 𝐶௜ሺݔ௜ , 𝜏௜ሻ ௫݂೔∞

଴ ሺݔ௜ሻ݀ݔ௜ = ሺܿ௪ + ܿ௟ሻ𝜏௜𝐹௜ሺ𝜏௜ሻ + ܿ௪ሺ݉௜ − 𝜏௜ሻ − ሺܿ௪ + ܿ௟ሻ ∫ ௜ݔ ௫݂೔ሺݔ௜ሻ݀ݔ௜𝜏೔଴           ሺͷሻ 

where ݉௜ indicates the mean of the ݅-th patient’s surgery duration and the optimal 𝜏௜∗ equals to 𝐹௫೔−ଵሺ ௖ೢ௖ೢ+௖𝑙ሻ where 𝐹ଵ−ଵሺͲሻ indicates the Inverse Cumulative Distribution Function (ICDF) of the patient 1. And the optimal expected 

cost equals to: 

𝐶௜′ = ܿ௪݉௜ − ሺܿ௪ + ܿ௟ሻ ∫ ௜ݔ ௫݂೔ሺݔ௜ሻ݀ݔ௜               ሺ͸ሻ𝐹 ೔−1( ௖ೢ௖ೢ+௖𝑙) 
଴  

This policy looks like a “Percentile” policy with the threshold ℎ = ሺ ௖ೢ௖ೢ+௖𝑙ሻ (Mansourifard 2017). Then the NV 

ordering heuristic policy selects the increasing order of 𝐶௜′. Intuitively, this could work better than VAR ordering 

since it takes the asymmetry of waiting cost and idle cost units into account in ordering and this could help reduce 

the total expected cost. In summary, the NV ordering heuristic of the patients is given in the Algorithm 1. 

 

 

 

 

Algorithm 1 Newsvendor Ordering 

1: Given parameters ܿ௪, ܿ௟ , and ௫݂೔   for ݅ = ͳ, … , 𝑁 

2: for  ݅ = ͳ, … , 𝑁 do 
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3:          𝜏௜ = 𝐹௜−ଵሺℎሻ 

4:          𝐶௜′ ← 𝐶௜̅ሺ𝜏௜ሻ 

5: end for 

6: sort the patients based on 𝐶௜′: 𝑝௝ has the ݆-th smallest element of {𝐶௜′, ݅ = ͳ, … , 𝑁}, ݅. ݁. 𝐶௣1′ ൑ ⋯ ൑ 𝐶௣𝑁′ .  
 

6. Numerical Results 

To show that the VAR ordering may perform poorly depending on the distributions, we consider the simplest 

scenario in which only two cases with known distributions need to be scheduled with zero overtime cost. For this 
case, the NV ordering is optimal. Here we present some examples to show that the VAR ordering under-perform the 
optimal (NV) ordering. 

In Fig. 2 (left), the orders chosen by both NV and VAR heuristics for two uniform distributions which threshold ℎ =  Ͳ.ͳ (i.e. ܿ௪ = ͳ, ܿ௟ = 9, ܿ௢ = Ͳ) are given. The first uniform case has mean ݉ଵ = ʹ and variance 𝜎ଵଶ = ʹ and 

the figure shows the solution for different mean and variance of the second uniform case. As it is obvious from the 
figure, the optimal ordering chooses the case with lower variance. Thus, for this case, VAR and NV orderings are 

equivalent and optimal because the uniform distributions follow the convex ordering based on Weiss 1990. 

Now to compare NV and VAR orderings, we use 𝐶𝑉𝐴𝑅−𝐶𝑁𝑉𝐶𝑉𝐴𝑅  as a measure for the improvement of the NV to VAR,  

where 𝐶𝑉𝐴ோand 𝐶𝑁𝑉are the total expected cost corresponding to NV and VAR heuristics, respectively. In other 
words, the difference between two costs divided by the cost of VAR heuristics shows the cost reduction percentage 

if NV heuristic is applied instead of VAR policy. In the following figures, we use heat-map to compare the cost 
improvement of NV to VAR ordering. The red color shows the highest improvement and the white color shows the 

lowest improvement which is 0, i.e., the costs of two heuristics are equal in the areas with white color. In Fig. 2 

(right), the orders for a scenario with two triangular distributions are shown. In some cases, for instance if 1.8൑𝜎ଶଶ < ʹ and ݉ଶ takes any value, the improvement of NV ordering to VAR ordering is around 30%. Similarly, in Fig. 
3, the orders for a scenario with one triangular and one uniform distribution are shown. 

  

Fig. 2. Ordering chosen by NV and VAR heuristics for (left) two uniform distributions with different mean and variances, ݉ଵ = 𝜎ଵଶ = ʹ; (right) for two triangular distribution with different mean and variances and the improvement of NV to VAR 

heuristic, ݉ଵ = 𝜎ଵଶ = ʹ. 
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Fig. 3. Ordering chosen by NV and VAR heuristics for a triangular distribution with ݉ଵ = 𝜎ଵଶ = ʹ and a uniform distribution 

with given mean and variances and the improvement of NV to VAR heuristic. 

In Fig. 4, scenarios with two log-normal distributions are shown where the improvement can go up to 90%. As we 

will see later, the log-normal is the most practical distribution for surgery duration. For instance, if ݉ଵ = 𝜎ଵଶ = ʹ 

and ݉ଶ ൑ 0.1 and 𝜎ଶଶ> 1, the NV heuristic reduces the cost up to 90% of the cost of VAR heuristic (Fig. 4 right). 

This result shows that even for a simple case of two surgeries without over-time cost, the VAR heuristic can perform 
poorly. 

 

Fig. 4. The improvement of NV to VAR heuristic for two lognormal distributions, (left) first with mean=0.5, variance=1 and the 
second with given mean and variances; (right) first with mean=1, variance=1 and the second with given mean and variances. 

Now for an example of two log-normal distributions, the improvement of NV to VAR heuristic for ܿ௪ = 1 is shown 

in Fig. 5 (right) for different values of ܿ௟. As it is shown in this figure, for larger ratio of 
௖𝑙௖ೢ  the NV ordering works 

much better than VAR ordering which is an example where VAR ordering cannot be a suitable choice for ordering. 

The lognormal distributions with the given mean and variances are shown in Fig. 5 (left) for 
௖𝑙௖ೢ = ͵ in which the 

cost improvement of NV to VAR heuristics is around 37%. For this example, the VAR heuristic will choose the red 

distribution which has a lower variance, but NV heuristic will choose the blue one since the percentile is very small 
and the chance of paying idle cost (which is the most significant one) is very low. 
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Fig. 5. (left) The two lognormal distributions, and their corresponding percentile values for 
௖𝑙௖ೢ =3 indicated with solid circles.; 

(right) The improvement of NV to VAR heuristic for two lognormal distributions, first with mean=1, variance=1 and the second 
with mean=0.5, variance=2. 

7. Case Study: Outpatient Surgery Sequencing 

In this section, we work with a real data set obtained from a hospital to compare the heuristic ordering policies 
mentioned in the previous section for practical and more complicated scenarios. 

7.1 Characteristics of Data Set 

The anonymized data set includes the surgeries in 2014-2015. For more consideration, we filtered out the data 
corresponding to the surgeries with frequency less than 30 since we need enough data to have a reasonable 
estimation about their distributions. First, we did some preprocessing on the data. For instance, we combined all 

surgeries related to ‘left’ or ‘right’ side of symmetric organs and substitute the title with ‘any’. The histograms of 
these most frequent surgery types are shown in Fig. 6.  

For the most frequent surgery type, ‘Any eye cataract removal’, we plot the histogram in Fig. 7 (left) with different 
distribution fits in which Log-normal distribution is the best. As given in Fig. 7 (right), the Log-normal distribution 
has larger Maximum Likelihood (ML) which results in a better fit compared to other distributions. This is to confirm 

that the most reasonable distribution for surgery duration is Log-normal (May 2000). 

 

 

Fig. 6. The histogram of top frequent surgery types, for the Outpatient Surgery Center (durations are in minutes) 
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Fig. 7. (left) The histogram and the best distribution fit; (right) The MLE values for three distribution fits for the most common 
surgery type ‘Any eye cataract removal” 

7.2 Modified NV Ordering 

The modified algorithm to use the data samples instead of distributions is given in Algorithm 2 where the set of 

samples for surgery ݅ is indicated by Si and the size of a set is denoted by |.|. The orders chosen by NV and VAR 
ordering heuristics are given in Table 1 and the surgery types with different orders in the sequence are indicated with 

specific colors. 

Algorithm 2 Newsvendor Ordering on Samples 

1: Given parameters ܿ௪, ܿ௟ , and ௜ܵ  for ݅ = ͳ, … , 𝑁 

2: for ݅ = ͳ, … , 𝑁 do 

3:          𝜏௜ = ݉݅݊𝜏∈[୫i୬ሺௌ೔ሻ,୫axሺௌ೔ሻ]|{ݏ ∈ ௜ܵ ∶ ݏ ൑ 𝜏|൒ ℎ| ௜ܵ}| 
4:          𝐶௜′ ← ଵ|ௌ೔| ∑ ሺܿ௪ሺݏ − 𝜏௜ሻ+ + ܿ௟ሺ𝜏௜ − ሻ+ሻ௦∈ௌ೔ݏ  

5: end for 

6: sort the patients based on 𝐶௜′: 𝑝௝ has the ݆-th smallest element of {𝐶௜′, ݅ = ͳ, … , 𝑁}, ݅. ݁. 𝐶௣1′ ൑ ⋯ ൑ 𝐶௣𝑁′ .  
 

 

Table 1: Orderings For ܿ௪ = ͳ, ܿ௟=5, ܿ௢ = ͳͲ, (nv_index: index of the surgery type in NV ordering, var_index: index of the 
surgery type in VAR ordering) 
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7.3 Sampling and Scheduling 

After fixing the orders (𝑝ଵ, … , 𝑝𝑁ሻ based on any heuristic ordering policy, finding the best appointment time 
schedules can be formulated as a stochastic program that replaces the expectation on the distribution with the sample 

average. To this end, we need a discrete finite set of scenarios, ܼ = ௞ݖ}  , ݇ =  ͳ, … , 𝐾}, that represent the 

uncertainty in the durations of all surgeries. If we have enough number of these scenarios, we can use averaging on 
the scenarios to mimic the expectation. 

Note that for each scenario, we need a sample from each surgery type and since the number of data points for each 
surgery type varies and are not enough, thus we use statistical sampling to sample with replacement and generate 
enough number of scenarios (in simulation, we generate K = 10, 000 scenarios). Now, given the discrete set of 
scenarios we can write the appointment time scheduling sub-problem as the following sample average 
approximation (Kleywegt 2002): 

min௧1,…,௧𝑁 ͳ݇ ∑[∑ ܿ௪ሺ ௝ܶሺݖ௞ሻ + ௞ሻݖ௣ೕሺݔ − ௞ሻሻ+𝑁ݖ௝+ଵሺݐ
௝=ଵ + ܿ௟ሺݐ௝+ଵሺݖ௞ሻ − ௝ܶሺݖ௞ሻ − ௣ೕݔ

𝐾
௞=ଵ ሺݖ௞ሻሻ+ 

+ܿ଴ ቀ ௝ܶሺݖ௞ሻ + ௞ሻݖ௣ೕሺݔ − .ݏ ,[+௘௡ௗሻݐ .ݐ ଵݐ = Ͳ, ௞ሻݖ௝ሺݐ ൒  ௞ሻݖ௝−ଵሺݐ

௝ܶሺݖ௞ሻ = max ,௞ሻݖ௝ሺݐ) ௝ܶ−ଵሺݖ௞ሻ + ݆∀ (௞ሻݖ௣ೕሺݔ = ʹ, … , 𝑁                   ሺ͹ሻ 

This stochastic programming can be used to compute the appointment time schedules for cases given a known 

sequence of surgeries (i.e. surgery orders) using the approximation algorithm proposed in Gose 2016. 

A very naive heuristic for scheduling the appointment times is the one that ignores patients’ waiting cost and ask all 

patients to be present in the morning, i.e. ݐ௝  =  Ͳ; ∀݅ =  ͳ, … , 𝑁. Thus, the surgeries will be done in a row without 

any idle time in between. We call this No-Idle (NI) heuristic for scheduling. For this policy, the orders can be 
anything and will not affect the total expected cost because the waiting cost is the same for all patients. This could 

be a good heuristic to compare the scheduling for the sequence generated by our NV ordering to show the 
importance of the waiting cost and the patients’ satisfaction even though its value is less than the idle cost of OR 

resources. 

7.4 Performance Comparison 

In this subsection, we compare the total average cost of different heuristics, NV, VAR and NI for scheduling and 
assume that the total shift time is 8 hours. The cost ratio of NV ordering to VAR and NI heuristics is shown in Fig. 8 

(left) and (right), respectively. These ratios are plotted versus idle cost ܿ௟ and overtime cost ܿ௢ , respectively, for 

waiting cost ܿ௪ = ͳ. As it is obvious from Fig. 8 (left), for larger values of ܿ௟ the NV heuristic performs about 18% 

better than VAR heuristics and similarly for very small values of ܿ௟  , NV outperforms VAR heuristic. But for 

0.2൑ ௖𝑙௖ೢ ൑ ʹ, these two heuristics perform closely. The reason is that when ܿ௪   and ܿ௟ are not close to each other, the 

asymmetry in the cost is more significant and thus the VAR heuristic that ignores this asymmetry cannot perform 

well. Similarly, as shown in Fig. 8 (right), for larger ܿ௢, the NV heuristic outperforms VAR heuristics about 19%. 

For ܿ௢ = Ͳ, there is not much different between the cost of NV and VAR, but as ܿ௢ increases, NV will have a better 
performance compared to VAR since NV schedules the appointment times earlier. As shown in both figures, the NI 

heuristic under-perform both VAR and NV heuristics specially for large values of ܿ௟ and small values of ܿ௢. Since 

NI will not cause any extra delay, it could perform better for larger values of ܿ௢, but for ܿ௢ = Ͳ the large amount of 

waiting cost for all surgeries is more important and causes the under-performance of this heuristic approach compare 

to others. Also for larger values of ܿ௟, NV will choose scheduled times close enough to reduce the idle cost, thus it 

will have the advantage of NI heuristic plus less waiting cost. And this results in outperforming NV compare to NI. 

But for ܿ௟ = Ͳ, the NV may choose a looser schedule than NI and cause an overtime cost, thus the improvement of 
NV to NI is not obvious for this case. 
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Fig. 8. (left) Cost ratio of NV to VAR and NV to NI heuristics versus ܿ௟, for ܿ௪ = ͳ, ܿ௢ = ͷ; (right) Cost ratio of NV to VAR and 

NV to NI heuristics versus ܿ௢, for ܿ௪ = ͳ, ܿ௢ = ͷ.  

In Denton2007, the normalized cost units are selected as ܿ௪ = ͳ, ܿ௟ = 8ଷ = ʹ.͸͹ and ܿ௢ = ସଷ =1.33 through their 

consultation with management engineer involved in managing the OR schedules. For their selection of cost units, we 

achieve the cost improvement of NV to VAR equal to 10% and NV to NI equal to 83%. 

8. Conclusion 

We have proposed a heuristic surgery sequencing policy based on the Newsvendor cost and compared it with the 

most common heuristics in practice, which order the surgeries based on the variance of surgery durations (VAR) and 
the one that asks all patients to be present in the morning to avoid any idle cost (NI). We have used both simulation 
and a hospital data to show that this proposed heuristic approach can outperform the available heuristics and have a 

considerable impact on the revenue of the hospitals as well as patients’ satisfaction.  

As a future work, it will be interesting to consider more complex scenarios in which multiple ORs are involved and 

the patients and doctors have time restrictions which will affect the ordering and scheduling and see how the NV 
heuristic can affect the cost reduction. In addition, any mathematical direction to show the optimality of NV 
ordering under specific conditions or deriving a performance guarantee for this scheme could be an exciting 

direction.  
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