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Abstract  
 

With the increasing challenges in energy storage, the importance of lithium-ion batteries reliability cannot 

be understated. The prediction of the battery exact time of failure can provide a cost-efficient maintenance 

plan. In this paper, we propose a novel data-driven approach based on deep long-short-term-memory 

neural networks LSTM for battery's remaining useful life (RUL) estimation. The suggested method uses 

the past battery capacity, the time to discharge and the operating temperature to directly predict the RUL. 

To validate the proposed model, we conduct experiments using the NASA lithium-ion battery dataset. 

The results show that our method produces exceptional performances for RUL prediction under different 

loading and operating conditions. 
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1. Introduction 
 

Lithium-ion batteries are a core component in electric cars, unmanned aerial vehicles, power tools and personal 

devices (Walker, Rayman, and White 2015).  Their increasingly widespread use is credited to their high energy 

density, their long cycle life, the absence of the memory effect, along with their lighter weight compared to other 

rechargeable batteries (Lu et al. 2013). 

Recent studies suggest that lithium-ion batteries are prone to different failure modes from shelf discharge and 

thermal runaway to power and capacity fade (Arachchige, Perinpanayagam, and Jaras 2017). These issues are 

attributed to high operational temperature during usage or storage, overcharging, over-discharging, or an increasing 

number of charges/discharge cycles. Moreover, battery failure could lead to loss of operations, reduced 

performances, and even disasters (Widodo et al. 2011) (D. Zhou et al. 2017). Consequently, the reliability, 

availability, and safety of lithium-ion battery is of prominent importance. 

A current approach to cope with the mentioned challenges is battery's prognostics and health management (PHM). 

Recent works intend to monitor the battery degradation process, assess its condition and predict the remaining useful 

life (RUL).This prediction can lead to an optimal mission or replacement interval planning. 

There are mainly two approaches for lithium-ion battery PHM: physics of failure models and data-driven models. 

Complete knowledge of the non-linear dynamic electrochemical process governing the degradation is necessary for 

the physics of failure approach. This process is intractable, and the model parameters estimation may need 

complicated experiments and costly devices which reduce the use in practice (Liu et al. 2017). 

On the other hand, by using run-to-failure sensors information combined with the corresponding operational and 

environmental conditions, artificial intelligence and statistical methods can capture the inherent relationship and 

trends between sensors values and the degradation state.  This simplicity combined with the rising availability of 

sensors data sparked recent interests from the research community for data-driven lithium-ion batteries RUL 

estimation:(Wu, Fu, and Guan 2016) reviewed the data-driven approaches for vehicle lithium-ion batteries 

prognostics up until 2016,these works use methods ranging from relevance vector machine (RVM)(J. Zhou et al. 

2013) ,and support vector regression (SVR)(Wang et al. 2014), to artificial neural networks(ANN)(Dong et al. 2012). 

Later works propose a gray model GM (1,1) (D. Zhou et al. 2017), a multi-kernel support vector machine (SVM) 

(Gao and Huang 2017), and a long-short-term-memory neural network (LSTM)(Zhang et al. 2017). 
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Nevertheless, there are several issues in most of these studies: first, the reliance on the construction of a health 

indicator (HI) can induce another source of generalisation error. Then, the forecasting of HI until its reach a failure 

threshold using one step or multi-step prediction can induce compounding errors. Finally, there’s a lack of works 

that generalise the problem to different environmental and operational conditions. 

Since 2012, deep learning models achieved significant breakthroughs in machine vision, voice recognition and 

games (LeCun, Bengio, and Hinton 2015). These achievements are attributed to the ability of deep neural networks 

to automatically learn proper representation directly from the raw data by stacking neural network layers. 

As part of a generic prognostic framework (Hinchi and Tkiouat 2018), we propose a deep neural network model 

based on deep long-short-term-memory neural network (LSTM). The model uses the battery capacity, the discharge 

time and the operating temperature until the prediction time, and combined it with the prediction time and the 

condition for failure to automatically predict the remaining useful life RUL.  

The rest of this paper is organised as follows: the deep neural network architecture is presented in details in section2. 

In section 3 we present the experimental validation. Then, conclusions are drawn in section 4.  

 

2. The methodology  
 

We define 
 

i

b

trul  the remaining useful life of the battery (b) at prediction time it , as the time until the battery’s 

capacity had reduced to a predefined threshold 
 b

fin-cap  .In this work, we model the function f   that estimates 

the RUL of a battery given the past capacity series 
 

1:i

b

tcap , the past discharge time  series 
 

1:i

b

tdiscT , the past 

operational temperature  series 
 

1:i

b

tTemp , the prediction time it  and the threshold 
 b

fin-cap  : 
 

 ·         
i 1:i 1:i 1:i

b b b b b

t t t t i,rul  f cap ,discT Temp t fin-, , cap
   

We model the function f  using a deep neural network. By stacking an LSTM layer and several dense layers, the 

model can predict the RUL directly from the sensors and operational data. The following subsections describe the 

architecture and the overall training process.  

2.1 The model architecture 

Figure 1 shows the detailed architecture of our model. 

 

 

Figure 1. The architecture of the deep neural network 

 
We take the combined capacity, discharge time and temperature vector sequence as an input layer; then the temporal 

degradation is represented by an LSTM layer. 

Recurrent neural networks (RNNs) are a class of neural networks designed to model sequential and time series data. 

They are based on a recurrent connection where the hidden state at time t th is a function of the hidden state at time 

t-1 t 1h   and the input data at time t tx : 
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  t t 1 th σ W h ,x  b    

In practice, this simple form of RNN is rarely used as it displays an inability to learn long-term dependency. 

The LSTM layer proposed by (Hochreiter and Schmidhuber 1997) solves this problem by offering a more complex 

internal state representation. The LSTM layer adds a cell state 
tC  to presents its long-term memory in addition to 

the hidden state
th . The computation is then distributed into several gates executed sequentially:  first, the forget 

gate determines the pieces of the long-term memory to continue remembering and the pieces to ignore using the new 

input: 

  t f t 1 t ff σ W h ,x  b    

Next, the input gate determines the information that should be extracted from the input: 

  t ξ t 1 t ξξ  Tanh W h ,x  b 
  

  t i t 1 t ii σ W h ,x  b 
  

Finally the output gate update the cell state and the hidden state using the past and present information: 

t t t 1 t tC f C  i ξ 
 

  t o t 1 t oo σ W h ,x  b   

  t t th  o .Tanh C   

Where ξf i f io ξ o, , , , , ,(b b b b W W W W, )  are the bias and the weight matrices, and σ  is the sigmoid function. 

Then, we concatenate the output of the hidden state with the prediction time and the threshold capacity. The next 

step is to stack the final three dense neural network layer and the corresponding batch normalisation (BN) layers 

(Ioffe and Szegedy 2015).The BN layer controls the input distribution across layers, consequently speeding up the 

training. Each dense layer is preceded by a BN layer and use a Relu(x) =max (0, x) activation function. For 

simplicity, we keep the same number of neurons across the hidden state of the LSTM layer, as well as the first and 

the second dense layer. The final layer is a neuron that predicts the RUL of the battery. 

2.2 The training process 

To train the model, we use the mean arctangent absolute percentage error (MAAPE) loss sfunction (Kim and Kim 

2016). This function holds several advantages over the mean absolute percentage error (MAPE) function in 

measuring forecast accuracy; MAAPE is scale-independent, it does not produce infinite values near zero, and its 

range of values is limited which make the neural network training easier. 

·N

i i

i 1 i

RUL RUL1
tan( )

N RUL
Arc




 L   

We train the model to minimise the specified loss function using the backpropagation through time (BPTT) 

algorithm to compute the gradients of each mini-batch. Each mini-batch sample an input vector from every battery 

used in the training of our model. This training scheme avoids the bias inducted by batteries with a long lifetime. We 

use the Adadelta algorithm for optimisation (Zeiler 2012). 
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3. Experimental validation   

 
We evaluate the proposed deep neural network using the battery dataset from NASA Prognostics Center of 

Excellence (PCoE) (Saha and Goebel 2007). In this dataset, The lithium-ion rechargeable batteries were run in 

batches of 4 through successive cycles of charge, discharge, and impedance at temperatures ranging from 4°C to 

44°C. Charging was conducted in a constant current of 1.5A until the battery voltage reached 4.2V and then 

maintained in a constant voltage until the charge current dropped to 20mA.The discharge was carried at different 

current profiles until the battery reaches the end voltage.The experiments were terminated when the cells reached the 

threshold capacity.Table 1 shows the various experimental conditions of the different batteries. In the cases where 

the threshold capacity was not set, we took the last measured capacity as the threshold capacity. 

 

Table 1. List of batteries and the corresponding loading and operational conditions. 

Battery Identifier   Discharge current(A) End voltage (V) Threshold 

capacity(Ahr) 

Operating 

temperature (°C) 

Battery #5 

Battery #6 

Battery #7 

2A  

2A 

2A 

2.7V 

2.5V  

2.2V  

1.4Ahr 

1.4Ahr 

1.4Ahr 

24°C 

24°C 

24°C 

Battery #25 

Battery #26 

Battery #27 

Battery #28 

A 0.05Hz square wave 

loading profile of 4A 

amplitude and 50% duty 

cycle   

2.0V 

2.2V 

2.5V 

2.7V 

 24°C 

24°C 

24°C 

24°C 

Battery #29 

Battery #30 

Battery #31 

Battery #32 

4A 

4A   

4A 

4A 

2.0V 

2.2V 

2.5V 

2.7V 

 43°C 

43°C 

43°C 

43°C 

Battery #33 

Battery #34 

Battery #36 

4A  

4A  

2A  

2.0V 

2.2V 

2.7V 

1.6Ahr 

1.6Ahr 

1.6Ahr 

24°C 

24°C 

24°C 

Battery #38 

Battery #39 

Battery #40 

1A 

2A 

4A    

2.2V 

2.5V  

2.7V 

1.6Ahr 

1.6Ahr 

1.6Ahr 

24°C and 44°C 

24°C and 44°C 

24°C and 44°C 

Battery #42 

Battery #43 

Battery #44 

Multiple fixed load 

current levels (4A and 

1A)   

2.2V 

2.5V 

2.7V 

1.4Ahr 

1.4Ahr 

1.4Ahr 

4°C 

4°C 

4°C 

Battery #45 

Battery #46 

Battery #47 

Battery #48 

1A 

1A 

1A 

1A 

2V 

2.2V 

2.5V 

2.7V 

1.4Ahr 

1.4Ahr 

1.4Ahr 

1.4Ahr 

4°C 

4°C 

4°C 

4°C 

Battery #49 

Battery #50 

Battery #51 

Battery #52 

2A   

2A   

2A   

2A   

2V 

2.2V 

2.5V 

2.7V 

1.4Ahr 

1.4Ahr 

1.4Ahr 

1.4Ahr 

4°C 

4°C 

4°C 

4°C 

Battery #54 

Battery #55 

Battery #56 

2A 

2A 

2A 

2.2V 

2.5V  

2.7V 

1.4Ahr  

1.4Ahr 

1.4Ahr 

4°C 

4°C 

4°C 

 
To benchmark our method, we use the same experimental framework employed by (Mosallam, Medjaher, and 

Zerhouni 2016) (i.e., the same dataset partition scheme, the same cost metric). The batteries are divided into a 

training and a testing set as shown in table 2.  
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Table 2.The training and testing dataset 

Training dataset   Testing dataset 

Battery #5 

Battery #7 

Battery #25 

Battery #26 

Battery #27 

Battery #29 

Battery #31 

Battery #32 

Battery #33 

Battery #36 

Battery #38 

Battery #40 

Battery #42 

Battery #44 

Battery #45 

Battery #46 

Battery #48 

Battery #49 

Battery #50 

Battery #51 

Battery #54 

Battery #56 

Battery #6 

Battery #28 

Battery #30 

Battery #34 

Battery #39 

Battery #43 

Battery #47 

Battery #52 

Battery #55 

 

 

The chosen metric is the mean absolute percentage error MAPE:  

·N

i i

i 1 i

RUL RUL1

N RUL
MAPE




    

The overall cost is the average MAPE: 

N

i 1

1

N
f i

MAPE MAPE


    

The model is implemented using the Keras library (Chollet 2017).The training and RUL prediction are run on an 

Ubuntu Linux machine with a Nvidia GTX 1070 GPU. 

We set the parameters of the Adadelta optimiser to their default values. We train the model for 20000 epochs. The 

number of neuron in the output of the LSTM layer and the two dense layers is 18. 

Table 3 presents the prediction results of the testing set. The prediction performance on all the tested batteries is 

satisfactory (min(MAPE) < 5) . Moreover, Figure 2 displays a plot of the predicted and real RUL for all cycles of 

the battery with the worst prediction performance (i.e., Battery #34). We can observe that the prediction is correct 

when the battery is close to its end of life. 

 

Table 3.The batteries MAPE 

Testing battery MAPE 

Battery #6 

Battery #28 

Battery #30 

Battery #34 

Battery #39 

2.03 

0.0 

0.065 

2.68 

0.437 
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Battery #43 

Battery #47 

Battery #52 

Battery #55 

0.698 

0.413 

0.0 

0.796 

 

 
Figure 2. The Predicted RUL of Battery #34 

 

Table 4 aggregates the results into the overall cost and compares it with the work of (Mosallam, Medjaher, and 

Zerhouni 2016). The significant discrepancy demonstrates the superiority of our approach. 

  

Table 4.The model performance 

f
MAPE  of our method 

f
MAPE  of (Mosallam, Medjaher, 

and Zerhouni 2016) 

0.7922% 26.3089% 

 

 

3. Conclusion    

 
In this work, we introduce an original deep neural network for lithium-ion battery prognostics based on LSTM  

layers. The proposed architecture demonstrates a clear performance advantage compared to the benchmark. 

Furthermore, the end-to-end nature eases the modelling process as no expert knowledge is involved. 

However, in online applications, the capacity is difficult to measure.Moreover, in risk-sensitive applications 

uncertainty estimation is essential. Future works must extract features from the discharge voltage and the current 

directly without using the capacity and must provide calibrated uncertainty estimations. 
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