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Abstract 

This paper studies the Newsvendor problem for a setting in which (i) the demand is temporally correlated, 

(ii) the demand is censored, (iii) the distribution of the demand is unknown. The correlation is modeled as 

a Markovian process. The censoring means that if the demand is larger than the action (selected 

inventory), only a lower bound on the demand can be revealed. The uncertainty set on the demand 

distribution is given by only the upper and lower bound on the amount of the change from a time to the 

next time. We propose a robust approach to minimize the worst-case total cost and model it as a min-max 

zero-sum repeated game. We prove that the worst-case distribution of the adversary at each time is a two-

point distribution with non-zero probabilities at the extrema of the uncertainty set of the demand. And the 

optimal action of the decision-maker can have any of the following structures: (i) a randomized solution 

with a two-point distribution at the extrema, (ii) a deterministic solution at a convex combination of the 

extrema. Both above solutions balance the over-utilization and under-utilization costs. Finally, we extend 

our results to uni-model cost functions. 

Keywords 

Distribution-free newsvendor problem, Markovian process, Min-max, Game theory, Uncertainty set, 

Robust optimization  

1. Introduction 

Newsvendor problem or perishable inventory control problem has been a research topic for many years (Arrow 

1951).  The newsvendor model relates by analogy to the situation faced by a newspaper vendor who must decide on 

how many newspapers to stock since he doesn’t know how many demand (customer) he might have, and he knows 

that the leftover newspapers cannot be sold the next day (it is perishable in some sense). Since then, different 
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solutions under different assumptions have been presented. One of the approaches to tackle such a challenge is 

formulating the problem as a robust optimization problem. For a complete literature review on robust optimization 

and its application in inventory control problems, we refer to Gabrel 2014 and Xin 2015a. Most of the works in the 

literature focus on the fully observable demand with ambiguous distribution (e.g. See 2010, Xin 2013). Among 

them, some of the works assume the demand is independent and identically distributed (i.i.d.) at different time 

periods (e.g. Ding 2002, See 2009, Solyali 2016). Some other works (such as Negoescu 2008, Besbes 2013) 

consider the case where the demand distribution is i.i.d but unknown, and to solve such a problem, they propose a 

learning process to estimate the distribution and make the decision. In recent years, it has been observed that the 

demand distribution is not necessarily i.i.d and it can have correlation over time (Xin 2015b, Carrizosa 2016, 

Natarajan 2017, Tai 2016). For example, In Xin 2015b, the Martingale demand is considered and the minimax 

optimal policy is explicitly computed in a closed form. Hu 2016 studied the inventory control problem with Markov-

modulated demand. In Carrizosa 2016, a robust approach is proposed for the Newsvendor problem with auto 

regressive (AR) demand with an unknown distribution. Using numerical experiments, they show that the proposal 

usually outperforms the previous benchmarks in terms of robustness and the average revenue. The distributionally 

robust version of the inventory problems over the set of distributions satisfying the known information, which is 

usually mean and covariance of demand, is studied in Natarajan 2017. The authors show that a three-point 

distribution achieves the worst-case expected profit and derive a closed-form expression for the problem.  

Note that in most of these studies, the demand is assumed to be fully observed. However, there are some research 

papers which study the inventory control problem with censored (partially observed) and temporally correlated 

demands (non i.i.d.) (e.g. Lu 2008, and Bisi 2011). In these works, a Bayesian scheme is employed to dynamically 

update the demand distribution for the newsvendor problem with a storable or perishable inventory. As another 

example, in Bensoussan 2007, a perishable inventory management problem with a memory (Markovian with known 

transition probabilities) and partially observable demand process is considered. In our previous work (Mansourifard 

2017), we studied a Newsvendor problem with Markovian and censored demand, with the assumption that the 

transition probabilities are known, as well. In this paper, we extend the work to the case where the transition 

probability matrix is unknown and only the upper and lower bounds are given.  

The contribution of this paper is as follows:  

 To our knowledge, this paper is the first work tackling the robust newsvendor problem with temporally 

correlated demand with censored demand, and we use a game theoretic approach in our solution. We model 

this problem as a zero-sum repeated game with incomplete information (Sorin 2002, Zamir 1992) and 

derive the solution in a closed-form. 

 We prove that the worst-case distribution of the adversary at each time is a two-point distribution with non-

zero probabilities at the lower and upper bound of the uncertainty set.  

 The optimal action to minimize the worst-case cost-to-go can have be any of the following two formats: (i) 

a randomized solution with a two-point distribution at the lower and upper bound of the uncertainty set, (ii) 

a deterministic solution at a convex combination of the lower and upper bounds of the uncertainty set 

 Both the possible solutions balance the over-utilization and under-utilization costs. In other words, if the 

over-utilization cost is larger than the under-utilization cost, the decision-maker assigns a higher probability 

to the lower bound (for the solution (i)) or chooses a lower action (for the solution (ii)) to behave 

conservatively. Otherwise, he behaves more aggressively to increase the chance of getting full observation 

which can be useful in decreasing the future cost.  

 We also show that similar results hold for a more general class of cost functions that are uni-model on the 

difference between the demand and the action. 

2. Problem Formulation 

We consider a single-item multi-period Newsvendor problem. The newsvendor model is a mathematical model in 

operations management and applied economics that is used to decide about the optimal inventory level (action) and 

it is typically assumes that the prices are fixed and the demand is uncertain for a perishable product. The decision-

maker must select the action (e.g. inventory) 𝑟௧  to satisfy the demand 𝑎௧ where 𝑡 = ͳ, … , 𝑇 is the time step with the 

finite horizon 𝑇. The goal of the decision maker is to minimize the total expected cost over the horizon.  

In this paper, we assume the demand 𝑎௧ is temporally correlated over time as a Markovian random process given by 𝑎௧ = 𝑎௧−ଵ + 𝛿௧ with 𝛿௧as a linear transition of the demand from time step 𝑡 − ͳ to 𝑡. In general, we have no 
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information about 𝛿௧, however, we assume that is bounded as 𝛿௧ ∈ {−𝛿௧𝑙 , … , Ͳ, … , 𝛿௧ℎ} where −𝛿௧𝑙, 𝛿௧ℎ are the lower 

and upper bound on the transition, respectively.  

As mentioned before, the demand is not necessarily fully observed at each time step. Thus, we consider the case of 

censored inventory problem in which at each time 𝑡, if 𝑟௧ >  𝑎௧, the decision-maker gets a full observation about 𝑎௧, 

and if 𝑟௧ ≤  𝑎௧, only partial observation about 𝑎௧  reveals (i.e. 𝑎௧ is censored).  

For a given demand 𝑎௧ and a selected action 𝑟௧, the decision maker faces an immediate cost as: 𝐶ሺ𝑎௧ , 𝑟௧ሻ = {ܿ௨ሺ𝑟௧ − 𝑎௧ሻ          𝑖𝑓 𝑟௧ > 𝑎௧ܿ𝑙ሺ𝑎௧ − 𝑟௧ሻ         𝑖𝑓 𝑟௧ ≤ 𝑎௧                         ሺͳሻ 

where ܿ௨ and ܿ𝑙 are over-utilization and under-utilization cost coefficients, respectively. The goal is to minimize the 

total expected cost accumulated over the finite horizon. Since the demand is unknown, this goal could be formulated 

as a min-max optimization problem: 𝐶ଵ∗ ሺ𝑟ଵ𝑙  , 𝑟ଵℎሻ = min𝑃𝑟1 ,…,𝑃𝑟𝑇   maxℙ𝑎1 ,…,ℙ𝑎1 ∑ 𝔼𝑟೟𝔼𝑎೟[𝐶ሺ𝑎௧ , 𝑟௧ሻ|𝐹௧],                        ሺʹሻ𝑇
௧=ଵ  

where 𝐹௧ is the information available to the player before time 𝑡, 𝕡𝑟೟ and 𝕡𝑎೟ are probability distribution functions 

(PDFs) of the action and the demand at time 𝑡, respectively. Since the transition of the demand is bounded, the 

action would also be bounded in [𝑟௧𝑙  , 𝑟௧ℎ]. Let 𝐶௧∗ (𝑟௧𝑙  , 𝑟௧ℎ) indicate the min-max expected cost-to-go from time 𝑡 

onward where 𝐶ଵ∗ (𝑟ଵ𝑙  , 𝑟ଵℎ) is given by (2). 

After taking the action 𝑟௧ and the observation revealed about the demand, the bounds on the actions can be updated 

for the next time step:  𝑟௧+ଵ𝑙  = {𝑎௧−𝛿௧𝑙           𝑖𝑓 𝑟௧ > 𝑎௧𝑟௧−𝛿௧𝑙            𝑖𝑓 𝑟௧ ≤ 𝑎௧  

rt+ଵh  = { at+δth          if rt > atrth+δth           if rt ≤ at 
Now, the goal is to find the best actions 𝑟௧∗ that achieves the min-max at (2). Fig. 1 shows an example of the demand 

path and the sequence of the taken actions with the corresponding costs and the bounds on the actions. 

 

Fig. 1. An example of the demand path and the sequence of the taken actions. 
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3. The Game Theoretic Approach 

This can be modeled as a game between the adversary and the decision-maker. The sufficient statistic for 𝐹௧ at each 

time step 𝑡, is the support {𝑟௧𝑙  , 𝑟௧ℎ} and the adversary chooses the probability distribution of 𝑎௧ ∈{𝑟௧𝑙  , 𝑟௧ℎ} to 

maximize the expected cost-to-go for the selected distribution of the action 𝑟௧. The solutions are given in the 

following theorem (and we prove them using induction):  

Theorem 1-a) The worst-case distributions 𝕡𝑎௧  are two-point distributions with non-zero probabilities at 𝑟௧𝑙  and 𝑟௧ℎ , 

for all 𝑡 =  ͳ, … , 𝑇. And there are two possible solution to the min-max problem: 

1. 𝑟௧∗ = 𝑐ೠ𝑟೟𝑙+௬೟𝑟೟ℎ𝑐ೠ+௬೟  , 𝑝𝑟೟ሺ𝑟௧∗ሻ = ͳ, and  𝑝𝑎೟  can be any two-point distribution at extrema               

2. 𝑝𝑟೟ሺ𝑟௧𝑙ሻ = ͳ − 𝑝𝑟೟ሺ𝑟௧ℎሻ = 𝑐ೠ𝑐ೠ+𝑐𝑙,  and 

𝑝𝑎೟ሺ𝑎௧𝑙 ሻ = ͳ − 𝑝𝑎೟ሺ𝑎௧ℎሻ = ௧ܿ௨ݕ + ௧ݕ ,  
where, ݕ௧ = ܿ𝑙 + ܿ௨ݕ௧+ଵܿ௨ + ௧+ଵݕ  , ∀𝑡 = ͳ, … , 𝑇 − ͳ ݕ𝑇 = ܿ𝑙 . 

Theorem 1-b) The min-max cost-to-go at time 𝑡 is obtained as: 𝐶௧∗ሺ𝑟௧𝑙 , 𝑟௧ℎሻ = 𝐶௧∗ሺ𝑟௧ℎ − 𝑟௧𝑙ሻ = ∆௧+ଵ + ܿ௨ݕ௧ܿ௨ + ௧ݕ ሺ𝑟௧ℎ − 𝑟௧𝑙ሻ, 
where, ∆௧= ∆௧+ଵ + ܿ௨ݕ௧ܿ௨ + ௧ݕ ሺ𝛿௧ℎ + 𝛿௧𝑙ሻ, ∀𝑡 = ͳ, … , 𝑇 − ͳ, 

∆௧= ܿ௨ݕ௧ܿ௨ + ௧ݕ ሺ𝛿௧ℎ + 𝛿௧𝑙ሻ. 
Proof: 

We use induction to prove the both parts of the Theorem 1. First, at horizon 𝑇, we need to solve the single-period 

version of this problem: 

minℙ𝑟𝑇 maxℙ𝑎𝑇 𝔼𝑟𝑇𝔼𝑎𝑇[𝐶ሺ𝑎𝑇 , 𝑟𝑇ሻ] = 𝔼𝑟𝑇[∫ ܿ௨ሺ𝑟𝑇 − ሻ𝑝𝑎𝑇𝑟𝑇௫=𝑟𝑇𝑙ݔ ሺݔሻ݀ݔ + ∫ ܿ𝑙ሺݔ − 𝑟𝑇ሻ𝑝𝑎𝑇ሺݔሻ݀ݔ].𝑟𝑇ℎ௫=𝑟𝑇  

The PDF maximizing the above equation is a two-point distribution where only 𝑝𝑎𝑇ሺ𝑟𝑇𝑙 ሻ and 𝑝𝑎𝑇ሺ𝑟𝑇ℎሻ are non-zero. 

Fig. 2 shows the graph of the cost functions for all 𝑎 and any two pairs of 𝑟, 𝑟′ ∈ [𝑟𝑇𝑙  , 𝑟𝑇ℎ]. As it is obvious, for any 

pair of 𝑟, 𝑟′, the values of 𝑎 that can affect the min-max cost are 𝑎 = 𝑟𝑇𝑙  and 𝑎 = 𝑟𝑇ℎ since their corresponding cost 

functions are included in the upper bound of the costs. Therefore, we can ignore any adversary actions inside the 

bounds, i.e. 𝑎 ∈ ሺ𝑟𝑇𝑙  , 𝑟𝑇ℎሻ which confirms that the distribution is two-point at horizon. 
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Fig.2. The cost functions 𝑋𝐶𝑇ሺ𝑎, 𝑟ሻ + ሺͳ − 𝑋ሻ𝐶𝑇ሺ𝑎, 𝑟′ሻ; WLOG assume 𝑟 < 𝑟′, 𝑋 = 𝑝𝑟𝑇ሺ𝑟′ሻ𝑝𝑟𝑇ሺ𝑟ሻ+𝑝𝑟𝑇ሺ𝑟′ሻ 
Now to find the best action of the decision-maker at horizon, we plot the graph of the cost functions for different 

values of 𝑟 in Fig. 3, and find the randomized action with the best probability density of 𝑝𝑎𝑇ሺ𝑟𝑇𝑙 ሻ = and 𝑝𝑎𝑇ሺ𝑟𝑇ℎሻ ݔ =ͳ −   .∗or the best deterministic action 𝑟𝑇 ݔ

For both possible actions, the expected cost can be computed as: 𝐶𝑇∗ሺ𝑟𝑇𝑙 , 𝑟𝑇ℎሻ = 𝑐𝑙𝑐ೠ𝑐𝑙+𝑐ೠ ሺ𝑟𝑇ℎ − 𝑟𝑇𝑙 ሻ. 

 

Fig. 3. The cost functions 𝑋𝐶𝑇(𝑟𝑇𝑙 ,r)+ሺͳ − 𝑋ሻ𝐶𝑇(𝑟𝑇ℎ, 𝑟);  𝑋 = 𝑝𝑎𝑇ሺ𝑟𝑇ℎሻ𝑝𝑎𝑇(𝑟𝑇ℎ)+𝑝𝑎𝑇ሺ𝑟𝑇𝑙 ሻ . The optimal distribution of player could have non-

zero probabilities at 𝑟 ∈ {𝑟𝑇𝑙 , 𝑟𝑇∗, 𝑟𝑇ℎ} 

Now for time steps 𝑡 = ͳ, … , 𝑇 − ͳ, we use induction to find the best action distributions (or best deterministic 

action) and the worst-case adversary distributions. If the solutions are valid for 𝑡 +  ͳ, for time 𝑡 we have: 

248



Proceedings of the International Conference on Industrial Engineering and Operations Management 

Paris, France, July 26-27, 2018 

 

© IEOM Society International 

minℙ𝑟𝑇 maxℙ𝑎𝑇 𝔼𝑟೟[∫ ܿ௨ሺ𝑟௧ − ሻ𝑝𝑎೟𝑟೟௫=𝑟೟𝑙ݔ ሺݔሻ݀ݔ + ∫ ܿ𝑙ሺݔ − 𝑟௧ሻ𝑝𝑎೟ሺݔሻ݀ݔ𝑟೟ℎ௫=𝑟೟  

+ ∫ 𝑝𝑎೟ሺݔሻ𝐶௧+ଵ∗ ሺݔ − 𝛿௧+ଵ𝑙 , ݔ + 𝛿௧+ଵℎ ሻ݀ݔ𝑟೟௫=𝑟೟𝑙  

+ ∫ 𝑝𝑎೟ሺݔሻ݀ݔ. 𝐶௧+ଵ∗ ሺ𝑟௧ − 𝛿௧+ଵ𝑙 , 𝑟௧ℎ + 𝛿௧+ଵℎ ሻ]𝑟೟ℎ௫=𝑟೟  

Since  𝐶௧+ଵ∗ ሺݕ, ሻݖ = 𝐶௧+ଵ∗ ሺݖ − ሻݕ = ∆௧+ଶ + 𝑐ೠ௬೟+1𝑐ೠ+௬೟+1 ሺݖ −  ,ሻݕ
minℙ𝑟೟ maxℙ𝑎೟ 𝔼𝑟೟[∫ ܿ௨ሺ𝑟௧ − ሻ𝑝𝑎೟𝑟೟௫=𝑟೟𝑙ݔ ሺݔሻ݀ݔ + ∫ ܿ𝑙ሺݔ − 𝑟௧ሻ𝑝𝑎೟ሺݔሻ݀ݔ𝑟೟ℎ௫=𝑟೟  

+ ∫ 𝑝𝑎೟ሺݔሻ݀ݔ. ሺ∆௧+ଶ + ܿ௨ݕ௧+ଵܿ௨ + ௧+ଵݕ ሺ𝛿௧+ଵ𝑙 + 𝛿௧+ଵℎ ሻሻ𝑟೟௫=𝑟೟𝑙  

+ ∫ 𝑝𝑎೟ሺݔሻ݀ݔ. ሺ∆௧+ଶ + ܿ௨ݕ௧+ଵܿ௨ + ௧+ଵݕ ሺ𝑟௧ℎ − 𝑟௧ + 𝛿௧+ଵ𝑙 + 𝛿௧+ଵℎ ሻሻ]𝑟೟ℎ௫=𝑟೟  

= ∆௧+ଵ + minℙ𝑟೟ maxℙ𝑎೟ 𝔼𝑟೟[∫ ܿ௨ሺ𝑟௧ − ሻ𝑝𝑎೟𝑟೟௫=𝑟೟𝑙ݔ ሺݔሻ݀ݔ + ∫ ܿ𝑙ሺݔ − 𝑟௧ሻ𝑝𝑎೟ሺݔሻ݀ݔ𝑟೟ℎ௫=𝑟೟  

+ ∫ 𝑝𝑎೟ሺݔሻ݀ݔ. ܿ௨ݕ௧+ଵܿ௨ + ௧+ଵݕ ሺ𝑟௧ℎ − 𝑟௧ሻ]𝑟೟ℎ௫=𝑟೟  

In other words, 𝐶௧∗ሺ𝑟௧𝑙 , 𝑟௧ℎሻ = ∆௧+ଵ + minℙ𝑟೟ maxℙ𝑎೟ 𝔼𝑟೟𝔼𝑎೟[𝐶௧′ሺ𝑎௧ , 𝑟௧ሻ], 
where, 

𝐶௧′ሺ𝑎௧ , 𝑟௧ሻ = {ܿ௨ሺ𝑟௧ − 𝑎௧ሻ                                                 𝑖𝑓 𝑟௧ > 𝑎௧ܿ𝑙ሺ𝑎௧ − 𝑟௧ሻ + ܿ௨ݕ௧+ଵܿ௨ + ௧+ଵݕ ሺ𝑟௧ℎ − 𝑟௧ሻ        𝑖𝑓 𝑟௧ ≤ 𝑎௧  

As it is shown in Fig. 4, we can ignore the adversary actions of 𝑎 ∈ ሺ𝑟௧𝑙  , 𝑟௧ℎሻ. Now to find the best distributions of 

the decision-maker, in Fig. 5 we plot the graph of the cost functions for different values of 𝑟 and find the best 

probability density for 𝑝𝑎೟ሺ𝑟௧ℎሻ = 𝑋 and 𝑝𝑎೟ሺ𝑟௧𝑙ሻ = ͳ − 𝑋. 
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Fig. 4. The cost functions 𝑋𝐶௧′ሺ𝑎, 𝑟ሻ + ሺͳ − 𝑋ሻ𝐶௧′ሺ𝑎, 𝑟′ሻ; WLOG assume  𝑟 < 𝑟′, 𝑋 = 𝑝𝑟೟ሺ𝑟′ሻ𝑝𝑟೟ሺ𝑟ሻ+𝑝𝑟೟ሺ𝑟′ሻ Note that to get the actual 

cost function we should add all of them by ∆௧+ଵ. 

 

Fig. 5. The cost functions 𝑋𝐶௧′(𝑟௧𝑙,r)+ሺͳ − 𝑋ሻ𝐶௧′(𝑟௧ℎ, 𝑟);  𝑋 = 𝑝𝑎೟(𝑟𝑇ℎ) = ͳ − 𝑝𝑎೟ሺ𝑟௧𝑙ሻ. The optimal distribution of player could 

have non-zero probabilities at 𝑟 ∈ {𝑟௧𝑙 , 𝑟𝑇∗, 𝑟௧ℎ}. 
And the worst-case distribution is a two-point distribution at 𝑟௧𝑙  and 𝑟௧ℎ. Therefore: 

 𝐶௧∗ሺ𝑟௧𝑙 , 𝑟௧ℎሻ = 𝑝𝑎೟ሺ𝑟௧𝑙ሻܿ௨ሺ𝑟௧∗ − 𝑟௧𝑙ሻ + ሺͳ − 𝑝𝑎೟ሺ𝑟௧𝑙ሻሻܿ𝑙ሺ𝑟௧ℎ − 𝑟௧ሻ +𝑝𝑎೟ሺ𝑟௧𝑙ሻ [∆௧+ଶ + ܿ௨ݕ௧+ଵܿ௨ + ௧+ଵݕ ሺ𝛿௧+ଵ𝑙 + 𝛿௧+ଵℎ ሻ] 
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+ ቀͳ − 𝑝𝑎೟ሺ𝑟௧𝑙ሻቁ [∆௧+ଶ + ܿ௨ݕ௧+ଵܿ௨ + ௧+ଵݕ ሺ𝑟௧ℎ − 𝑟௧∗ + 𝛿௧+ଵ𝑙 + 𝛿௧+ଵℎ ሻ] 
= 𝑝𝑎೟ሺ𝑟௧𝑙ሻܿ௨ሺ𝑟௧∗ − 𝑟௧𝑙ሻ + ቀͳ − 𝑝𝑎೟ሺ𝑟௧𝑙ሻቁ (ܿ𝑙 + ܿ௨ݕ௧+ଵܿ௨ + (௧+ଵݕ ሺ𝑟௧ℎ − 𝑟௧ሻ + ∆௧+ଶ 

= 𝑝𝑎೟ሺ𝑟௧𝑙ሻܿ௨ሺ𝑟௧∗ − 𝑟௧𝑙ሻ + ቀͳ − 𝑝𝑎೟ሺ𝑟௧𝑙ሻቁ ௧ሺ𝑟௧ℎݕ − 𝑟௧ሻ + ∆௧+ଶ = ܿ௨ሺ𝑟௧∗ − 𝑟௧𝑙ሻ + ∆௧+ଶ. 
which results in the optimal actions given in Theorem 1-a and the min-max expected cost given in Theorem 1-b, 

thus completes the proof of Theorem 1. 

4. Extension of Cost Function 

We can get similar results for general form of uni-modal cost functions, given by: 

𝐶ሺ𝑎௧ , 𝑟௧ሻ = {𝐶௨ሺ𝑟௧ − 𝑎௧ሻ          𝑖𝑓 𝑟௧ > 𝑎௧𝐶𝑙ሺ𝑎௧ − 𝑟௧ሻ           𝑖𝑓 𝑟௧ ≤ 𝑎௧ 

where 𝐶௨ሺݕሻand 𝐶𝑙ሺݕሻ are increasing functions of ݕ. 

Lemma 1-a) The worst-case distribution at all time steps 𝑡 =  ͳ, … , 𝑇 are two-point distributions 𝑝𝑎೟ሺ𝑟௧𝑙ሻ ≠ Ͳ and 𝑝𝑎೟ሺ𝑟௧ℎሻ ≠0. 

Lemma 1-b) The min-max expected cost has the following property: 𝐶௧∗ ሺݕ + ,ݔ ݖ + ሻݔ  = 𝐶௧∗ ሺݕ,  .ሻݖ
Proof: 

The min-max cost-to-go at time 𝑡 is given by: 𝐶௧∗ሺ𝑟௧𝑙 , 𝑟௧ℎሻ = min𝑟೟ maxℙ𝑎೟ ∫ 𝑝𝑎೟ሺݔሻ[ܿ௨ሺ𝑟௧ − ሻݔ + 𝐶௧+ଵ∗ ሺݔ − 𝛿௧𝑙, ݔ + 𝛿௧ℎሻ]𝑟೟௫=𝑟೟𝑙  ݔ݀

+ ∫ 𝑝𝑎೟ሺݔሻ[ܿ𝑙ሺݔ − 𝑟௧ሻ + 𝐶௧+ଵ∗ ሺ𝑟௧ − 𝛿௧𝑙, 𝑟௧ℎ + 𝛿௧ℎሻ]𝑟೟ℎ௫=𝑟೟  ݔ݀

At horizon 𝑇 the worst-case distribution is a two-point distribution and: 𝑟𝑇∗ = {𝑟: 𝐶௨ሺ𝑟 − 𝑟𝑇𝑙 ሻ = 𝐶𝑙ሺ𝑟𝑇ℎ − 𝑟ሻ} 

and the expected cost equals: 𝐶𝑇∗ሺ𝑟𝑇𝑙 , 𝑟𝑇ℎሻ = 𝐶𝑙ሺ𝑟𝑇ℎ , 𝑟𝑇∗ሻ = 𝐶௨ሺ𝑟𝑇∗, 𝑟𝑇𝑙 ሻ. 
This shows that Lemma 1 is true at 𝑡 =  𝑇, now if it is true at 𝑡 +  ͳ, for time 𝑡 we have: 𝐶௧∗ሺ𝑟௧𝑙 , 𝑟௧ℎሻ = min𝑟೟ maxℙ𝑎೟ ∫ 𝑝𝑎೟ሺݔሻ[ܿ௨ሺ𝑟௧ − ሻݔ + 𝐶௧+ଵ∗ ሺ𝑟௧𝑙 − 𝛿௧𝑙, 𝑟௧𝑙 + 𝛿௧ℎሻ]𝑟೟௫=𝑟೟𝑙  ݔ݀

+ ∫ 𝑝𝑎೟ሺݔሻ[ܿ𝑙ሺݔ − 𝑟௧ሻ + 𝐶௧+ଵ∗ ሺ𝑟௧ − 𝛿௧𝑙, 𝑟௧ℎ + 𝛿௧ℎሻ]𝑟೟ℎ௫=𝑟೟  ݔ݀

where we replace ݔ at 𝐶௧+ଵ∗ ሺݔ − 𝛿௧𝑙 , ݔ + 𝛿௧ℎሻ with 𝑟௧𝑙 . From the above equation, it is obvious that: (i) the worst-case 

distribution is a two-point distribution, and (ii) if we add a fixed value to 𝑟௧𝑙  and 𝑟௧ℎ  the minimizing rt will be added 

with the same amount and thus 𝐶௧∗ (𝑟௧𝑙+ݔ; 𝑟௧ℎ +ݔ) = 𝐶௧∗ (𝑟௧𝑙 , 𝑟௧ℎ ) for any ݔ. 

And recursively: 
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𝑟௧∗ = {𝑟: 𝐶𝑙ሺ𝑟௧ℎ − 𝑟ሻ+𝐶௧+ଵ∗ ሺ𝑟 − 𝛿௧𝑙 , 𝑟௧ℎ + 𝛿௧ℎሻ = 𝐶௨ሺ𝑟 − 𝑟௧𝑙ሻ + 𝐶௧+ଵ∗ ሺ𝑟௧𝑙 − 𝛿௧𝑙, 𝑟௧𝑙 + 𝛿௧ℎሻ} 

or a randomized solution as follows: 𝑝𝑟೟ሺ𝑟௧𝑙ሻ = ͳ − 𝑝𝑟೟ሺ𝑟௧ℎሻ = 𝑟௧ℎ − 𝑟௧∗𝑟௧ℎ − 𝑟௧𝑙 , 
Or any combination of non-zero probabilities at 𝑟௧ ∈ {𝑟௧𝑙 , 𝑟௧∗, 𝑟௧ℎ} which proves Lemma 1-a. And the expected cost 

equals:  𝐶௧∗ሺ𝑟௧𝑙 , 𝑟௧ℎሻ = 𝐶𝑙ሺ𝑟௧ℎ − 𝑟௧∗ሻ+𝐶௧+ଵ∗ ሺ𝑟௧∗ − 𝛿௧𝑙 , 𝑟௧ℎ + 𝛿௧ℎሻ = 𝐶௨ሺ𝑟௧∗ − 𝑟௧𝑙ሻ + 𝐶௧+ଵ∗ ሺ𝑟௧𝑙 − 𝛿௧𝑙 , 𝑟௧𝑙 + 𝛿௧ℎሻ. 
This proofs Lemma 1-b. 

5. Conclusion 

We have studied the Newsvendor problem with the following challenges: (i) the demand is temporally correlated as 

a Markovian process, (ii) the demand can only be censored (i.e. partially observable), (iii) the distribution of the 

demand and the transition probabilities of the Markovian process are unknown and only upper and lower bounds on 

the transitions are given. We modeled this problem as a min-max zero-sum repeated game. We have proved that the 

worst-case distribution of the adversary at each time is a two-point distribution with non-zero probabilities at the 

lower and upper bound of the uncertainty set. The optimal action to minimize the worst-case cost-to-go can have be 

any of the following two formats: (i) a randomized solution with a two-point distribution at the lower and upper 

bound of the uncertainty set. If the over-utilization cost is larger than the under-utilization cost, higher probability is 

assigned to the lower bound to behave conservatively. Otherwise, higher probability is assigned to the upper bound 

to behave more aggressively and increase the chance of full observation. (ii) a deterministic solution at a convex 

combination of the lower and upper bounds of the uncertainty set, which also balance the over-utilization and under-

utilization costs. Finally, we showed that similar results hold for a more general class of cost functions that are uni-

model on the difference between the demand and the action. 
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