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Abstract 
We study a set of inventory control problems with correlated demands over different time periods. On the 

other hands, we relax the assumption of fully observation of the demand at the end of each time period. In 

other words, we consider the case of partially observed (censored) demand in the context of a multi-

period inventory problem. If the demand in a period is larger than the inventory level, we don’t observe 

the unmet demand. Otherwise, the demand is fully observed and the leftover inventory is carried over to 

the next period. Formulating the problem as a Partially Observable Markov Decision Process provides a 

dynamic program (DP) to minimize the total expected cost. Unfortunately, the corresponding DP is 

defined on an uncountable state space, with little hope for a computationally feasible solution. We present 

an interesting heuristic policy with a percentile threshold structure which outperforms the myopic policy 

and performs close to the optimal policy. We derive its performance guarantee and evaluate it using 

numerical simulations.  
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1. Introduction 

Inventory control is one of the important topics in operations research and management and it has been studied by 

many researchers (Qin, 2011). In this kind of problems, the demand for some good is assumed to follow a stochastic 

process and at the beginning of each decision epoch the decision-maker decides on the inventory level (i.e. how 

many items to store) in order to satisfy the demand. As one of the challenging problems in inventory control, many 

studies have been focused on different distributions of the demand. Most inventory models in these studies assume 

that demands are independent and identically distributed over different time periods (e.g. Besbes 2010). However, in 

recent years, it has been observed that this assumption might not hold in practice (Tai 2016), thus, there have been 

research papers on the inventory problems with correlated demands over time (Hu 2016, Alwan 2016). For instance, 

in some studies the demand is assumed to be Markov-modulated (Hu, 2016), or Autoregressive (Alwan 2016).  

Another challenging problem in this field is about the observability of the demand. In other words, if the demand is 

higher than the sale, the unmet demand might not be fully observable. In some inventory systems such as retail 

stores, unmet demand of inventory is lost and cannot be observed or recorded. In literature, this problem is referred 

as censoring or partial observability (e.g. Lu 2008, Bisi 2011).  

In this paper, we address the two aforementioned challenging problems. We study the inventory control problem 

when the demand is partial observable, and correlated over time periods as a Markovian process. Therefore, we face 

with a Partial Observable Markov Decision Process (POMDP) problem. As such the solution of this problem can be 
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characterized via a dynamic programming (DP), however, it is computationally complex and a POMDP is generally 

known to be P-SPACE hard (Papadimitriou 1987). In literature, e.g. Bensoussan 2007 and 2008, a similar problem 

set is studied and the “existence” of an optimal policy is shown. In our previous work, we proposed a sub-optimal 

solution for a POMDP to solve the perishable inventory control problem (Mansourifard 2017).  In particular, we 

introduced a new class of heuristic percentile policies with percentile threshold structure, and evaluated their 

performance. In this paper, we consider an extension to a multi-period inventory control with censored Markovian 

demand in which the leftover inventory is carried over to the next period. We present the heuristic policy for this 

problem and evaluate its performance using the lower bound derived on the cost of the optimal policy.  

The remainder of the paper is organized as follows: In section 2, we review the related works. The problem 

formulation is given in section 3 followed by the dynamic programming formulation in section 4. Section 5 presents 

the heuristic policy and its performance bound. The simulation results are given in section 6. Finally, we conclude 

the paper in section 7.  

2. Related Literature 

Most of the inventory control literature (e.g. Ding 2002, and Bensoussan 2009) assume that the demand process is 

independent and identical distributed (i.i.d) at different time periods. Some prior works (such as Negoescu 2008, 

Besbes 2013) consider the case where the demand distribution is i.i.d but unknown, so the learning plays an 

important role in estimating the distribution and making the decision. For instance, in Besbes 2013, the demand 

distribution is estimated from historical data. They show that the optimal policy has a percentile structure and 

characterize the implications of partial observations on the performance of the optimal policy in both discrete and 

continuous settings. However, in recent years, it has been observed that the demand distribution is not necessarily 

i.i.d and it can have correlation over time (Tai 2016). For example, Hu 2016 studied the inventory control problem 

with Markov-modulated demand. Note that in most of these papers, the demand is assumed to be fully observed. 

In some other literature works such as Lu 2008, Chen 2010, and Bisi 2011, the inventory problem with partially 

observed (censored) i.i.d. demand has been studied. In Bisi 2011, a Bayesian scheme is employed to dynamically 

update the demand distribution for the problem with storable or perishable inventory. They show that the Weibull is 

the only newsvendor distribution for which the optimal solution can be expressed in scalable form. In Lu 2008, the 

perishable inventory control problem with censored demand is studied in which the demand distribution is assumed 

to be i.i.d. but unknown. They use Bayesian approach to update the distribution parameters periodically based on the 

censored historical sales data. Chen 2010 studied the non-perishable inventory control problem with censored and 

i.i.d. demand. They developed bounds and heuristics for such a problem. 

Furthermore, there are some research papers which study the inventory control problem with censored and 

temporally correlated demands. In Bensoussan 2007, a perishable inventory management problem with memory 

(Markovian) demand process is considered. In their work, some structural properties of the optimal actions relative 

to the myopically optimal actions are obtained. And in Bensoussan 2008, they extended the work to the non-

perishable inventory. In these papers, the existence of an optimal policy is shown. In their work, some structural 

properties of the optimal actions relative to the myopically optimal actions are obtained. In this paper, in contrast, 

we focus on the design and analysis of a class of heuristic policies. In particular, we present the class of percentile 

policies and evaluate their performance. In addition, we present a lower bound on the cost of the optimal policy 

which can be computed with low complexity and give a measure for how close our heuristic policies are to the 

optimal policy.  

In our previous works (Mansourifard 2013, and 2015), we studied another version of this problem with no carry-

over in a network congestion control context and derived lower and upper bounds on the optimal policy. In this 

work, we study the inventory control problem in which the demand is censored and Markovian and the left-over 

inventory is carried over to the next time period. 

3. Problem Formulation  

In this problem, the demand is a Markovian process which is only partially observable to the decision-maker and the 

action that the decision-maker must take is the quantity to be ordered to increase the inventory level. We consider a 

discrete-time finite-state Markov process whose state, denoted by ݀௧, is the demand amounts evolving based on a 

known transition matrix over a finite horizon, 𝑇. At each time step (period) t, the decision-maker selects an ordered 

quantity based on the history of observations and pays a cost which is a function of the total inventory level (i.e. 

previous inventory level plus ordered quantity) and the actual demand Bt. If the total inventory level is higher than 
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the actual demand, the demand can be fully observed based on the number of sold items, otherwise, only the fact 

that the demand was higher than the inventory level will be revealed (partial observation). 

The objective is to select the sequential actions (policy) such that the total expected cost accumulated over the 

horizon is minimized. Selecting an ordered quantity which makes the inventory level higher than the actual demand 

causes the over-utilization cost, but gives full information about the actual demand. On the other hand, selecting an 

ordered quantity which does not increase the inventory level higher than the actual demand causes under-utilization 

cost, and only gives partial information about the actual demand. Therefore, the decision-maker faces with a trade-

off between selecting the ordered quantity which minimizes the immediate expected cost and selecting higher 

ordered quantity to earn more information to minimize the future expected cost. 

Since we do not get full observation all the time, we formulate our problem within a POMDP-based framework 

defined as follows: 

 State: The state of Markov process, ݀௧, is one of the elements of a finite state set denoted by ℳ ={Ͳ,ͳ, … , {ܯ ⊂ ℤ. 

 State transition: The transition probabilities of the actual demand ݀௧ over time are assumed to be known 

and stationary and indicated by a transition probability matrix, 𝑃. This is an |ℳ| × |ℳ| matrix with 

elements 𝑃௜,௝ = 𝑃ݎሺ݀௧+ଵ = ݆|݀௧ = ݅ሻ, ݅, ݆ ∈ ℳ,  which indicates the probability of moving from state i at ݐ∀

a time step to the actual demand j at the next time step. 

 Action: At each time step, we choose an action ݍ௧ ∈ ℳ as the ordered quantity. Note that the set of actions 

are equal to the set of demands. We have an inventory level, denoted by ܮ௧, which is the leftover inventory 

from previous time steps. 

 Observed information: The observed information at time step ݐ is defined by the event ݋௧ሺݍ௧ + ௧ሻܮ ∈ Ο  

which is a function of the inventory level, ordered quantity and the actual demand. The possible events 

corresponding to the action ݍ௧ is as follows: 

௧ݍ௧ሺ݋ - + ௧ሻܮ = {݀௧ = ݅}, ݅ ∈ {Ͳ, … , ௧ܮ + ௧ݍ − ͳ} is the event of fully observing ݀௧. This corresponds to the 

ordering of the quantity which increases the inventory level higher than ݀௧. 

௧ݍ௧ሺ݋ - + ௧ሻܮ =  {݀௧ ൒ ௧ݍ +  ௧} is the event of partial observing that ݀௧ is larger than or equal to theܮ

inventory level plus ordered quantity. 

 Cost: The immediate cost paid at time step t is a mapping C: ℳ × ℳ × Ο → ℝ, and depends on the 

inventory level ܮ௧, the demand ݀௧, and the ordered quantity ݍ௧. Therefore, the immediate cost function is 

given by: ܥሺ݀௧ , ;௧ܮ ௧ሻݍ = ܿ଴ݍ௧ + { ܿ௨ሺܮ௧ + ௧ݍ − ݀௧ሻ     ݂݅    ݀௧ ൑ ௧ܮ + ௧    ܿ𝑙ሺ݀௧ݍ − ௧ܮ − ௧ሻ    ݂݅      ݀௧ݍ  ൒ ௧ܮ  +  ௧               (1)ݍ

 

where ܿ௨ and ܿ𝑙 are the over-utilization (holding) and the under-utilization (shortage) cost per unit, respectively, and ܿ௢ is the ordering cost per unit. 

4. Dynamic Programming Formulation  

We represent the decision problem based on the decision-maker’s belief, i.e. his posterior probability conditioned on 

past actions and observations. In other words, we define the state to be the belief vector representing the conditioned 

probability distribution on the hidden demand ݀௧ at each time step and minimize the expected cost-to-go 

corresponding to the belief. Let the conditioned probability distribution of the demand (assuming a finite state set), 

given all past observations, is denoted by a belief vector ܾ௧ = [ܾ௧ሺͲሻ, … , ܾ௧ሺܯሻ], with elements of ܾ௧ሺ݇ሻ =Pr | ,ሻݏ݊݋ݐ𝑣ܽ݅ݎ݁ݏܾ݋ ݐݏܽ݌ ݇ ∈ ℳ. In other words, ܾ௧  represents the probability distribution of ݀௧ over all possible 

demands of ℳ. The set of all possible belief vectors is denoted by ܦ.  

The goal is to make a decision at each time step based on the history of observations; but due to the lack of full 

information, the decision-maker may only make the decision based on the belief vector. It can be shown that the 

belief vector is a sufficient statistic of the complete observation history. 

The belief updating ℳ × Ο × → ܦ  maps current belief vector, updated inventory level, and the observation to the ܦ

belief vector for the next time step: 
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ܾ௧+ଵ = {𝑇௅𝑡+௤𝑡[ܾ௧]𝑃          ݂݅    ݋௧ = {݀௧ ൒ ௧ܮ + ௧݋              ݂݅                       ௜𝑃ܫ,{௧ݍ = {݀௧ = ݅},              ሺʹሻ 

 

where ܫ௜  is the ܯ + ͳ-dimensional unit vector with 1 in the ݅-th position and 0 otherwise. Note that ܫ௜𝑃 is equivalent 

to the ݅-th row of matrix P, i.e. 𝑃௜,.. 𝑇௔  is a non-linear operation on a belief vector ܾ, as follows: 

𝑇௔[ܾ]ሺ݅ሻ = { Ͳ                      ݂݅ ݅ < ܽ,ܾሺ݅ሻ∑ ܾሺ݆ሻெ௝=௔              ݂݅ ݅ ൒ ܽ.        ሺ͵ሻ  
The inventory level will be updated as follows: ܮ௧+ଵ = {Ͳ                   ݂݅ ݋௧ = {݀௧ ൒ ௧ܮ + ௧ܮ,{௧ݍ + ௧ݍ − ௧݋ ݂݅       ݅ = {݀௧ = ݅},              ሺͶሻ 

 

Figure 1 shows the POMDP models for this problem. 

 

 

Fig. 1. The POMDP model 

The immediate expected cost, caused by selecting the ordered quantity ݍ௧  and based on the belief vector ܾ௧ and the 

leftover inventory ܮ௧  is obtained by taking expectation of (1), as follows: ̅ܥሺܾ௧ , ;௧ܮ ௧ሻݍ = ∑ ܾ௧ሺ݅ሻܥሺ݅, ;௧ܮ ௧ሻ௜∈ℳݍ  

= ܿ଴ݍ௧ + ܿ𝑙 ∑ ܾ௧ሺ݅ሻሺ݅ − ௧ܮ − ௧ሻݍ + ܿ௨ ∑ ܾ௧ሺ݅ሻሺܮ௧ + ௧ݍ − ݅ሻ.                  ሺͷሻ௅𝑡+௤𝑡−ଵ
௜=଴

ெ
௜=௅𝑡+௤𝑡  

 

The goal is to minimize the total expected cost in the horizon T, over all admissible policies 𝜋, given by 

min𝜋 ,𝑇𝜋ሺܾଵܬ ଵሻܮ = min𝜋 𝔼{∑ ሺ݀௧ܥ , ;௧ܮ ௧ሻ|ܾଵ},                         ሺ͸ሻ𝑇ݍ
௧=ଵ  

where ܾଵ  and ܮଵ  are the initial belief vector and the initial inventory level, respectively. ܬ𝑇𝜋ሺሺܾଵ,  ଵሻ is the totalܮ

expected cost accumulated over the horizon T under policy 𝜋. The policy 𝜋 specifies a sequence of functions 𝜋ଵ, … , 𝜋𝑇 ,where 𝜋௧is the decision rule and maps a belief vector ܾ௧  and inventory level ܮ௧ to an ordered quantity at 

time step t, i.e., 𝜋௧: ܦ ×  ℳ → ℳ, ℳ  ݍ௧ =  𝜋௧ሺܾ௧ , ௧ሻ. The optimal policy denoted by 𝜋optܮ
 is a policy which 

minimizes (6) and it exists since the number of admissible policies are finite. 

257



Proceedings of the International Conference on Industrial Engineering and Operations Management 

Paris, France, July 26-27, 2018 

© IEOM Society International 

We may solve this POMDP problem using Dynamic programming (DP), as the following recursive equations hold: 𝑉௧ሺܾ௧ , ௧ሻܮ ≔ min௤𝑡 𝑉௧ሺܾ௧ , ;௧ܮ ௧ሻ,                                                                              ሺ͹ܽሻ 𝑉𝑇ሺܾ𝑇ݍ , ;𝑇ܮ 𝑇ሻݍ = 𝑇̅ሺܾ𝑇ܥ , ;𝑇ܮ 𝑇ሻ,                                                                             ሺ͹ܾሻ 𝑉௧ሺܾ௧ݍ , ;௧ܮ ௧ሻݍ ≔ ሺܾ௧̅ܥ , ;௧ܮ ௧ሻݍ + 𝔼{𝑉௧+ଵሺܾ௧+ଵ, ௧ܮ|௧+ଵሻܮ , ௧ݍ , ܾ௧},    ݐ < 𝑇           ሺ͹ܿሻ 

 

where ܾ௧+ଵ and ܮ௧+ଵ are the updated belief vector and inventory level, respectively. They can be computed given the 

ordered quantity ݍ௧ and observation ݋௧  as shown in (2) and (4). The value function 𝑉௧ሺܾ௧ ,  ௧ሻ is the minimumܮ

expected cost-to-go when the current belief vector is ܾ௧ and the inventory level is ܮ௧. Note that 𝑉௧ሺܾ௧ , ;௧ܮ  ሻ is theݍ

expected cost-to-go after time t under belief ܾ௧, inventory level ܮ௧ and the ordered quantity ݍ at time t and following 

the optimal policy for time t+1 onward, with updated belief vector and inventory level according to the ordered 

quantity ݍ. The future expected cost can be computed as follows: 𝔼{𝑉௧+ଵሺܾ௧+ଵ, ௧ܮ|௧+ଵሻܮ , ௧ݍ , ܾ௧}                  = ∑ ܾ௧ሺ݅ሻ𝑉௧+ଵ(𝑇௅𝑡+௤𝑡[ܾ௧]𝑃, Ͳ)                  ெ
௜=௅𝑡+௤𝑡  

+ ∑ ܾ௧ሺ݅ሻ𝑉௧+ଵ(𝑃௜,., ௧ܮ + ௧ݍ − ݅).௅𝑡+௤𝑡−ଵ
௜=଴               ሺͺሻ 

 

Note that for all ݐ =  ͳ, … , 𝑇 ,  𝑉௧ሺܾ௧ , 𝑇−௧𝜋ܬ௧ሻ= ݉݅݊𝜋ܮ ሺܾ௧ , ,௧ሻ with probability 1. In particular, 𝑉ଵሺܾଵܮ ଵሻܮ = ,𝑇𝜋ሺܾଵܬ  ଵሻܮ

A policy 𝜋opt
 is optimal if for ݐ =  ͳ, … , 𝑇; ݎ௧௢௣௧ሺܾ௧ , ௧௢௣௧ሺܾ௧ݍ :௧ሻ achieves the minimum in (7a), denoted byܮ , ௧ሻܮ ≔ arg min௤∈ℳ 𝑉௧ሺܾ௧ , ;௧ܮ  ሻ.                                           ሺͻሻݍ

 

5. Heuristic Policy and its Performance Bound 

5.1 Percentile Threshold Policies  
Since finding the optimal policy is computationally intractable for large horizons, we consider specific form of 

heuristic policies which have percentile threshold structure as follows: 

௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾ௧ݍ , ௧ሻܮ = min {ݍ ∈ ℳ: ∑ ܾ௧ሺ݅ሻ ൒ ℎ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾଵ, ଵሻ},          ሺͳͲሻ௅𝑡+௤ܮ
௜=଴  

where the threshold ℎ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾଵ,  .ଵܮ ଵሻ is a function of the initial belief vector ܾଵ and the initial inventory levelܮ

From now on we will call this form of heuristic policies, percentile policies. The reason to consider this specific 

form of policies is that later in this paper we derive a lower and an upper bound on the optimal policy (with some 

condition on the parameters) which both have percentile threshold structures and conjecture that there may be a 

good approximation for the optimal policy with the same structure. 

5.2 Performance Bound of PT Policies 
In this section, we present a performance guarantee for percentile policies in the following theorem. This 

performance guarantee is used to evaluate the heuristic percentile policies in the Simulation section. 

Theorem 1. The performance bound on the percentile policy with threshold ℎ௉𝑒௥௖𝑒௡௧௜𝑙𝑒  is given by: ܬ𝑇−ଵ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾଵ, 𝑇−ଵ௢௣௧ܬଵሻܮ ሺܾଵ, ଵሻܮ ൑ ,𝑇−ଵ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾଵܬ 𝑇−ଵ𝐹ைܬଵሻܮ ሺܾଵ, ଵሻܮ = 𝑉ଵ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾଵ, ,ଵሻ𝑉ଵ𝐹ைሺܾଵܮ ଵሻܮ  ,        ሺͳͳሻ 

𝑉௧𝐹ைሺܾ௧ , ௧ሻܮ = min௤ ሺܾ௧̅ܥ , ;௧ܮ ሻݍ + ∑ ܾ௧ሺ݅ሻ𝑉௧+ଵ𝐹ை (𝑃௜,., ሺܮ௧ + ݍ − ݅ሻ+),ெ
௜=଴  
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𝑉௧௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾ௧ , ௧ሻܮ = Γ𝑇−௧ሺܾ௧ , ௧ܮ , ℎ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሻ + ∑ ܾ௧ሺ݅ሻ𝑉௧+ଵ௉𝑒௥௖𝑒௡௧௜𝑙𝑒(𝑃௜,., ௧ܮ + ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾ௧ݍ , ௧ሻܮ − ݅)௅𝑡+௤𝑃𝑒ೝ𝑐𝑒೙𝑡𝑖𝑙𝑒ሺ௕𝑡,௅𝑡ሻ−ଵ
௜=଴  

+ ∑ [𝐴௧,𝜏 ∑ ܾ𝜏ሺ݅ሻ𝑉𝜏+ଵ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺ𝑃௜,., ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾ𝜏ݍ , Ͳሻ − ݅ሻ]௤𝑃𝑒ೝ𝑐𝑒೙𝑡𝑖𝑙𝑒ሺ௕𝜏,଴ሻ−ଵ
௜=଴          ሺͳʹሻ𝑇−ଵ

𝜏=௧+ଵ  

 

Where ܾ𝜏 = 𝑇௅𝜏−భ+௤𝜏−భ[ܾ𝜏−ଵ]  and, 
 Γ𝑇−௧ሺܾ௧ , ௧ܮ , ℎ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሻ ≔ ̅ܥ ቀܾ௧ , ;௧ܮ ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾ௧ݍ , ௧ሻቁܮ + + ∑ 𝐴௧,𝜏̅ܥ ቀܾ𝜏, Ͳ; ,௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾ𝜏ݍ Ͳሻቁ ,𝑇

𝜏=௧+ଵ  

𝐴௧,𝜏 ≔ ∑ ܾ௧ሺ݅ሻெ
௜=௅𝑡+௤𝑡 ∏ [ ∑ ܾ௧′ሺ݅ሻ],             ሺͳ͵ሻெ

௜=௤𝑡′
𝜏−ଵ

௧′=௧+ଵ  

such that  ̅ܥሺܾ, ;ܮ   .ሻis the expected immediate cost, defined in (5)ݍ

Note that 𝑉𝜏+ଵ௉𝑇 ሺ𝑃௜,.ሻand 𝑉௧+ଵ𝐹ை ሺ𝑃௜,.ሻ can be computed recursively from (12). To proof the above theorem, we need the 

following proposition. 

Proposition 1. The cost-to-go of the optimal policy is lower bounded by the cost-to-go of the full observation (FO) 

case under the same belief vector, i.e., 𝑉௧ሺܾ௧ , ௧ሻܮ ൒ 𝑉௧𝐹ைሺܾ௧ ,  ௧ሻ.                                ሺͳͶሻܮ

 

Note that FO scenario corresponds to simpler case where in both cases of under/over-utilization the actual demand 

could fully observed. In other words, there is no asymmetry in the observation. Since more information reveals at 

each time, the total cost could be less than the total cost of partial observation case. This is given in the following 

proposition. See Appendix A for proof. 

5.3 Optimal Percentile Threshold Policy  
In this section, we introduce the optimal percentile threshold policy, which chooses a threshold providing the 

minimum cost-to-go for the given initial belief vector among all possible thresholds. We will show in Simulation 

Section that this policy outperforms the myopic policy and performs close enough to the optimal policy. Among all 

percentile threshold policies, the PT- opt policy provides the minimum cost-to-go which is given by: 

௉𝑇−௢௣௧ሺܾ௧ݎ , ௧ሻܮ = min {ݎ ∈ ℳ: ∑ ܾ௧ሺ݅ሻ ൒ ℎ௉𝑇−௢௣௧ሺܾଵ, ଵሻ},            ሺͳͷሻ௅𝑡+௥ܮ
௜=଴  

such that ℎ௉𝑇−௢௣௧ሺܾଵ, ଵሻܮ = ݃ݎܽ minℎ𝑃𝑇 𝑇−ଵ௉𝑇ܬ ሺܾଵ,  ଵሻ,                  ሺͳ͸ሻܮ

 

where ܬ𝑇−ଵ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾଵ, ,ଵሻ is the total expected cost equal to 𝑉ଵ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾଵܮ  ଵሻ defined in (12) achieved by selectingܮ

the actions corresponding to the threshold ℎ௉𝑒௥௖𝑒௡௧௜𝑙𝑒ሺܾଵ, = ݐ ଵሻ at all the time stepsܮ  ͳ, … , 𝑇. 

6. Numerical results 

 We present some numerical results to evaluate the performance of the introduced heuristic policy, PT-opt. The 

simulation parameters, except in the figures that their effect is considered, are fixed as follows: the number of states 

M = 9, the under-utilization cost coefficient ܿ௨ = Ͳ.ͷ, ܿ଴ = ͳ, and the transition probabilities given by: 
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Figure 2 and 3 show the performance bounds of percentile policies versus under-utilization cost, ܿ𝑙 and horizon, T, 

respectively. As it is shown in Figure 2, for larger ܿ𝑙, the performance bound is tight and it is less than 1.5. For 

smaller ܿ𝑙, the percentile policy outperforms the myopic policy with larger gap. On the other hand, figure 3 shows 

that for small horizon, T, both our heuristic policy and the myopic policy perform close to the optimal and as the 

horizon increase, the performance bound of our heuristic stays around 1.7 but the performance bound myopic policy 

increases up to 2.8. 

 

Fig. 2. The performance bound of percentile policies versus under-utilization cost, ܿ𝑙, for ܯ = ͻ, ܿ௨ = Ͳ.ͷ, ܿ଴ =ͳ, 𝑇 = ʹͲ. 

 

Fig. 3. The performance bound of percentile policies versus horizon T, for ܯ = ͻ, ܿ௨ = Ͳ.ͷ, ܿ଴ = ͳ,  ܿ𝑙 = ͵. 

Figure 4 and 5 show the threshold of percentile policies versus under-utilization cost, ܿ𝑙, and horizon, T, 

respectively. As figure 4 shows, our heuristic policy prefers to choose a threshold close to one, in other words it 

behaves aggressively to increase the chance of full observation. But the myopic policy chooses a very small 

threshold for small ܿ𝑙, to decrease the immediate cost by acting conservatively. Furthermore, based on figure 5, our 

heuristic policy chooses higher thresholds for larger horizon, since it could increase the chance of getting full 
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observation and decreasing the future cost, but the myopic policy does not care about the future cost and chooses the 

same threshold for any horizon. 

 

 

Fig. 4. The threshold of percentile policies versus under-utilization cost, ܿ𝑙, for ܯ = ͻ, ܿ௨ = Ͳ.ͷ, ܿ଴ = ͳ, 𝑇 = ʹͲ. 

 

 

Fig. 5. The threshold of percentile policies versus horizon T, for ܯ = ͻ, ܿ௨ = Ͳ.ͷ, ܿ଴ = ͳ,  ܿ𝑙 = ͵. 

 

7. Conclusion 

We have studied a set of inventory control problems with Markovian demands over different time periods which can 

only be partially (censored) at the end of each period. If the demand in a period is larger than the inventory level, we 

don’t observe the unmet demand. Otherwise, the demand is fully observed and the leftover inventory is carried over 

to the next period. We formulated the problem as a Partially Observable Markov Decision Process and since the 

corresponding DP is defined on an uncountable state space, with little hope for a computationally feasible solution, 

we presented an interesting heuristic policy with a percentile threshold structure which outperforms the myopic 

policy and performs close to the optimal policy. We derived its performance guarantee and evaluated it using 

numerical simulations.  

As future works, we aim to identify the conditions where our heuristic policy is optimal. We can also consider a 

more complicated scenario where the transition matrix is unknown and needs to be learned over time. It will be 

interesting to study other correlation between demand overtime beside the Markovian relationship. 
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Appendix A 

To prove Proposition 1, we need the concavity of the value functions given in the following lemma. 

 

Lemma 1. The expected cost-to-go accrued under action r and inventory level L, 𝑉௧ሺܾ, ;ܮ ,ሻ, and the value function, 𝑉௧ሺܾݍ ,ሻ, are concave with respect to the belief vector b, i.e. 𝑉௧ሺܾܮ ;ܮ ሻݍ ൒ 𝜆𝑉௧ሺܾଵ, ;ܮ ሻݍ + ሺͳ − 𝜆ሻ𝑉௧ሺܾଶ, ;ܮ ݎ∀    ,ሻݍ ∈ ℳ 

 𝑉௧ሺܾ, ሻܮ ൒ 𝜆𝑉௧ሺܾଵ, ሻܮ + ሺͳ − 𝜆ሻ𝑉௧ሺܾଶ, ሻ,    ∀Ͳܮ ൑ λ ൑ ͳ.               ሺͳ͹ሻ 

Proof of Lemma 1. We use induction to prove the concavity of 𝑉௧ሺܾ, ;ܮ  ሻ with respect to the belief vector, b, for theݍ

finite horizon. Let’s assume b is a linear combination of two belief vectors b1 and b2, such that: ܾ = 𝜆ܾଵ + ሺͳ − 𝜆ሻܾଶ, Ͳ ൑ λ ൑ ͳ.                 ሺͳͺሻ  
At horizon T, the immediate cost, as given in (5), is affine linear with respect to the belief vector. In other words, ̅ܥሺܾ, ;ܮ ሻݍ ൒ 𝜆̅ܥሺܾଵ, ;ܮ ሻݍ + ሺͳ − 𝜆ሻ̅ܥሺܾଶ, ;ܮ  ሻ                 ሺͳͻሻݍ

which confirms the concavity of the expected cost-to-go at horizon T. Now assuming Vt+1(.) is concave, we will 

consider 𝑉௧ሺ. ሻ. Using (7c) and (8) we have: 

 𝑉௧ሺܾ, ;ܮ ሻݍ − 𝜆𝑉௧ሺܾଵ, ;ܮ ሻݍ − ሺͳ − 𝜆ሻ𝑉௧ሺܾଶ, ;ܮ ሻݍ = ,ሺܾܥ] ;ܮ ሻݍ − 𝜆̅ܥሺܾଵ, ;ܮ ሻݍ − ሺͳ − 𝜆ሻ̅ܥሺܾଶ, ;ܮ  [ሻݍ
 + ∑ [ܾሺ݅ሻ − 𝜆ܾଵሺ݅ሻ − ሺͳ − 𝜆ሻܾଶሺ݅ሻ]𝑉௧+ଵሺ𝑃௜,., ܮ + ݍ − ݅ሻ௅+௤−ଵ

௜=଴  

+𝑉௧+ଵሺ𝑇௅+௤[ܾ]𝑃, Ͳሻ ∑ ܾሺ݅ሻ − 𝜆𝑉௧+ଵሺ𝑇௅+௤[ܾଵ]𝑃, Ͳሻ ∑ ܾଵሺ݅ሻெ
௜=௅+௤

ெ
௜=௅+௤  

−ሺͳ − 𝜆ሻ𝑉௧+ଵ(𝑇௅+௤[ܾଶ]𝑃, Ͳ) ∑ ܾଶሺ݅ሻெ
௜=௅+௤              ሺʹͲܽሻ 

= ∑ ܾሺ݅ሻ[𝑉௧+ଵ(𝑇௤[ܾ]𝑃, Ͳ) − 𝜆′ெ
௜=௅+௤ 𝑉௧+ଵሺ𝑇௅+௤[ܾଵ]𝑃, Ͳሻ −ሺͳ − 𝜆′ሻ𝑉௧+ଵሺ𝑇௅+௤[ܾଶ]𝑃, Ͳሻ]             ሺʹͲbሻ 

 

where the last equality follows from (19) and 𝜆′ = 𝜆 ∑ ௕భሺ௜ሻಾ𝑖=ಽ+೜∑ ௕ሺ௜ሻಾ𝑖=ಽ+೜  .  Let ݆ ൒ + ܮ   :ݍ 

𝜆′𝑇௅+௤[ܾଵ]ሺ݆ሻ + ሺͳ − 𝜆′ሻ𝑇௅+௤[ܾଶ]ሺ݆ሻ = 𝜆 ∑ ܾଵሺ݅ሻ𝑇௅+௤[ܾଵ]ሺ݆ሻ + ሺͳ − 𝜆ሻ ∑ ܾଶሺ݅ሻ𝑇௅+௤[ܾଶ]ሺ݆ሻெ௜=௅+௤ெ௜=௅+௤ ∑ ܾሺ݅ሻெ௜=௅+௤  

 = ଵ∑ ௕ሺ௜ሻಾ𝑖=ಽ+೜ [𝜆 ∑ ܾଵሺ݅ሻ ௕భሺ௝ሻ∑ ௕భሺ௜ሻಾ𝑖=ಽ+೜ெ௜=௅+௤ + ሺͳ − 𝜆ሻ ∑ ܾଶሺ݅ሻ ௕మሺ௝ሻ∑ ௕మሺ௜ሻಾ𝑖=ಽ+೜ெ௜=௅+௤ ] 
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= 𝜆ܾଵሺ݆ሻ + ሺͳ − 𝜆ሻܾଶሺ݆ሻ∑ ܾሺ݅ሻெ௜=௅+௤ = ܾሺ݆ሻ∑ ܾሺ݅ሻெ௜=௅+௤ = 𝑇௅+௤[ܾ]ሺ݆ሻ.                       ሺʹͳሻ 

 

And for ݆ < ܮ + 𝑇௅+௤[ܾଵ]ሺ݆ሻ ,ݎ + ሺͳ − 𝜆′ሻ𝑇௅+௤[ܾଶ]ሺ݆ሻ = Ͳ. Multiplying by P, we have 𝜆′𝑇௅+௤[ܾଵ]𝑃 + ሺͳ −𝜆′ሻ𝑇௅+௤[ܾଶ]𝑃 = 𝑇௅+௤[ܾ]𝑃. The induction step follows the concavity of 𝑉௧+ଵሺ. ሻ. 
To prove the concavity of value function, 𝑉௧ሺܾሻ, with respect to b we use the definition of (7a) to get: 𝑉௧ሺܾ, ሻܮ = min௥ 𝑉௧ሺܾ, ;ܮ ሻ∗ݍ = 𝑉௧ሺܾ, ;ܮ ሻ                               ሺʹʹܽሻ ൒∗ݍ 𝜆𝑉௧ሺܾଵ, ;ܮ ሻ∗ݍ + ሺͳ − 𝜆ሻ𝑉௧ሺܾଶ, ;ܮ ሻ                                     ሺʹʹܾሻ ൒∗ݍ 𝜆 min௤భ 𝑉௧ሺܾଵ, ;ܮ ଵሻݍ + ሺͳ − 𝜆ሻ min௤మ 𝑉௧ሺܾଶ, ;ܮ = ଶሻ                   ሺʹʹܿሻݍ 𝜆𝑉௧ሺܾଵ, ሻܮ + ሺͳ − 𝜆ሻ𝑉௧ሺܾଶ,  ሻ                                                ሺʹʹ݀ሻܮ

 

where ݍ∗ = arg ݉݅݊௤ 𝑉௧ሺܾ; ;ሻ and (22b) is the result of the lemma for 𝑉௧ሺܾݍ   ሻ and applying the definition, given∗ݍ

in (7a), one more time in (22d) completes the proof. 

Proof of Proposition 1. To prove this proposition, it is enough to show that, 𝑉௧ሺܾ௧ , ௧ሻܮ − 𝑉௧𝐹ைሺܾ௧ , ௧ሻܮ ൒ 𝑉௧(ܾ௧ , ;௧ܮ (௧௢௣௧ݍ − 𝑉௧𝐹ை(ܾ௧ , ;௧ܮ (௧௢௣௧ݍ ൒ Ͳ          ሺʹ͵ሻ 

for ݍ௧௢௣௧ = arg ݉݅݊௥ 𝑉௧ሺܾ௧; ;ሻ. First, the cost-to-go function of FO case can be computed as: 𝑉௧𝐹ைሺܾ௧ݍ ሻݍ = ;ሺܾ௧̅ܥ ሻݍ + ∑ ܾ௧ሺ݅ሻ𝑉௧+ଵ𝐹ை (𝑃𝑦,.),ெ
௜=଴                                                   ሺʹͶሻ 

Now to proof the proposition we use induction. Fist, at ݐ =  𝑇 we have: 𝑉𝑇(ܾ𝑇 , ;𝑇ܮ (𝑇௢௣௧ݍ − 𝑉𝑇𝐹ை(ܾ𝑇 , ;𝑇ܮ (𝑇௢௣௧ݍ = 𝑇ܾ)̅ܥ , ;𝑇ܮ (𝑇௢௣௧ݍ − 𝑇ܾ)̅ܥ , ;𝑇ܮ (𝑇௢௣௧ݍ = Ͳ                  ሺʹͷሻ 

 

Now assuming (14) is true at time steps t + 1 onwards, we should prove it for time t. 

𝑉௧ሺܾ௧ , ௧ሻܮ − 𝑉௧𝐹ைሺܾ௧ , ௧ሻܮ ൒ ௧ܾ)̅ܥ] , ;௧ܮ (௧௢௣௧ݍ + ∑ ܾ௧ሺ݅ሻ𝑉௧+ଵሺ𝑃௜,., ௧ܮ + ௧௢௣௧ݍ − ݅ሻ௅𝑡+௤𝑡೚೛𝑡−ଵ
௜=଴  

+ ∑ ܾ௧ሺ݅ሻ𝑉௧+ଵሺ𝑇௅𝑡+௤𝑡೚೛𝑡[ܾ௧]𝑃, Ͳሻ]ெ
௜=௅𝑡+௤𝑡೚೛𝑡  

௧ܾ)̅ܥ]− , ;௧ܮ (௧௢௣௧ݍ + ∑ ܾ௧ሺ݅ሻ𝑣௧+ଵ𝐹ை ሺ𝑃௜,., ௧ܮ + ௢௣௧ሺܾ௧ሻݍ − ݅ሻ௅𝑡+௤𝑡೚೛𝑡−ଵ
௜=଴  

+ ∑ ܾ௧ሺ݅ሻ𝑉௧+ଵ𝐹ை ሺ𝑃௜,., Ͳሻ],ெ
௜=௅𝑡+௤𝑡೚೛𝑡                                                   ሺʹ͸ሻ 

Thus, 

𝑉௧ሺܾ௧ , ௧ሻܮ − 𝑉௧𝐹ைሺܾ௧ , ௧ሻܮ ൒ ∑ ܾ௧ሺ݅ሻ𝑉௧+ଵ(𝑃௜,., ௧ܮ + ௧௢௣௧ݍ − ݅) − 𝑉௧+ଵ𝐹ை ሺ𝑃௜,., ௧ܮ + ௧௢௣௧ݍ − ݅ሻ]௅𝑡+௤𝑡೚೛𝑡−ଵ
௜=଴  

+ ∑ ܾ௧ሺ݅ሻ[𝑉௧+ଵ ቀ𝑇௅𝑡+௤𝑡೚೛𝑡[ܾ௧]𝑃, Ͳቁ − 𝑉௧+ଵ𝐹ை (𝑃௜,., Ͳ)]ெ
௜=௅𝑡+௤𝑡೚೛𝑡                      ሺʹ͹ሻ 

 

The first term is greater than or equal to zero based on the concavity at t + 1. We use the concavity of the value 

function to get the following inequality: 
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𝑉௧+ଵ ቀ𝑇௅𝑡+௤𝑡೚೛𝑡[ܾ௧]𝑃, Ͳቁ ൒ ∑ ܾ௧ሺ݅ሻ𝑉௧+ଵ(𝑃௜,., Ͳ)ெ௜=௅𝑡+௤𝑡೚೛𝑡∑ ܾ௧ሺ݆ሻெ௝=௅𝑡+௤𝑡೚೛𝑡 .                                  ሺʹͺሻ 

 

Therefore, by applying (28) and the induction assumption at t + 1, we have: 

∑ ܾ௧ሺ݅ሻ[𝑉௧+ଵ ቀ𝑇௅𝑡+௤𝑡೚೛𝑡[ܾ௧]𝑃, Ͳቁ − 𝑉௧+ଵ𝐹ை (𝑃௜,., Ͳ)]ெ
௜=௅𝑡+௤𝑡೚೛𝑡 ൒ ∑ ܾ௧ሺ݅ሻ[𝑉௧+ଵ(𝑃௜,., Ͳ) − 𝑉௧+ଵ𝐹ை (𝑃௜,., Ͳ)] ൒ Ͳ                 ሺʹͻሻெ

௜=௅𝑡+௤𝑡೚೛𝑡  

thus, (27) is greater than or equal to zero. This completes the proof. 
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