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Abstract 
Single-period problem which is called newsboy problem, is one of the commonplace problem in 

inventory control. Using inventory control models in each stage of industry cycle has become commonly 

to determine order quantities and commodity inventory. In this paper, optimizing a bi-objective, multi-

product, multi-constraint, single-period problem is considered with incremental discount policy in 

purchasing commodity to find the order quantities which will be maximized both expected profit and 

minimized service level. Constraints are budget and warehouse capacity. In addition, decision variables are 

real and it is assumed that holding and shortage costs occur at the end of a period. Formulation of the 

problem is presented and shown to be a mixed integer nonlinear programming model. Furthermore, Multi- 

Objective Decision Making (MODM) approaches are utilized to solve the model with meta-heuristic 

algorithms. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are provided to find an 

approximate optimum solutions of the problem. After applying RSM method to calibrate the parameters of 

both algorithms, their performances in solving instances compare in terms of solution quality of both 

algorithms. In final, GAMS program is applied for validating the solutions.  
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1. Introduction 
Inventory control has found a great significance place with progress in technology and development in a large 

number of systems including industrial, productive, servicing and others. In general, ‘newsboy problem’ focuses on 

circumstances where demand for a commodity is random and unsold or unused ordered items become abolished at the 

end of the cycle. In one hand, buyer may incur a cost to dispose of them; on the other hand, if he initially decides to 

buy smaller amounts of these commodities; shortages may occur, causing loss of income. In this problem, commodity 

has the most considerable characteristic of a ‘single-period’ problem, and the chief purpose is to determine ordered-

quantity in order to minimize costs and maximize profit. In real-world situations, many products have a limited period 

in selling, so the newsboy model is reflective of many real life circumstances and is often used to aid decision-making 

in fashion, sporting, service industries such as airlines, hotels, to name but a few to manage capacity or evaluate 

advanced booking of orders. Hence, the classical newsboy problem and its various extensions have been widely 

studied by many researchers as a substantial number of papers published since 1951.  

The first efforts on newsboy problem were published by Arrow et al. (1951) and Morse and Kimball (1951). 

Hadley and Whitin (1963) proposed and solved a multi-products model in following years. After following decades 

with escalating interest in this problem, many articles were published in development of different extensions. Silver 

and Pyke (1998) and Khouja (1999) did complete studies for this problem; as Khouja (1999) published an article 

entitled ''The single-period problem: literature review and suggestions for future research'', which examined different 

extensions of newsboy problem and divided them into several categories. These extensions of newsboy problem that 
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were introduced by Khouja include; (a) considering different objectives and utility functions; (b) applying different 

discount structures; (c) utilizing multi-product constraint models; and others. 

The models to maximize the probability of achieving the profit as a target for newsboy problem were proposed 

by Lau (1980), Anvari (1987), A. Lau and H. Lau (1988), Silver and Pyke (1998), Das and Maiti (2007). Atkinson 

(1979), Anvari and Kusy (1990), and Chung (1990) also applied different effectiveness and risk-tolerance criteria for 

the first type of extension. 

While the purchase cost per unit is often fixed, in classical newsboy problem, sometimes, vendor gives discounts 

to motivate the buyer to purchase earlier in order to decrease the inventory level. As a result, in the second type of 

extension, Anvari (1987), Pfeifer (1989), Anvari and Kusy (1990), and Chung (1990) analyzed sales discounts policy 

on quantities for their models. Furthermore, Khouja (1995) introduced a model which was perused the effects of 

discounts on demand. Chen and Ho (2011, 2013) proposed a model in fuzzy demands with discounts structures. 

For the third type of extension, a multi-products problem with budget constraint was considered by A. Lau and 

H. Lau (1995, 1996), Khouja (1999), Vairaktarakis (2000), Abdel-Malek and Montanari (2005), and Abdel-Malek 

and Areeratchakul (2007). In addition, Shao and Ji (2006) analyzed in fuzzy modeling.  Abdel-Malek et al. (2004) 

presented and exact solution for this type of extension which demand followed a uniform distribution.  

In another type of extensions, Mostard and Teunter (2006) with assuming that sold products could be returned in 

a specific range of time and could be sold again if not abolished, considered the percentage of the returned products 

in a single-period model. Keren and Pliskin (2006) calculated the optimum order quantity in a risk-averse model. Chen 

and Chuang (2006) analyzed newsboy problem with shortage level as constraint. Abdel-Malek and Areeratchakul 

(2007) proposed the quadratic programming approach in a multi-product newsboy problem with budget, capacity, and 

order constraints. Moreover, Taleizadeh et al. (2009, 2010) developed a multi-product newsboy model with both 

incremental and total discounts in which both real and fuzzy costs. Then, they proposed a genetic algorithm to solve 

the obtained non-linear integer model. Furthermore, Tiwari et al. (2011) considered an unreliable newsboy problem 

with a forecast update. Murray et al. (2012) introduced a multi-product model to determine the order quantity and 

price setting.   

In this paper, a multi-products newsboy problem would be developed in which demand follows a uniform 

distribution; warehouse capacity and budget have been considered as constraints and either the incremental discount 

policy is applied to purchase the items. The overall goal is to determine the optimal order quantity for each product 

that reaches the purposes of maximizing both of the expected profits and the minimized service level. The rest of the 

paper is organized as follows. Section 2 is allocated to define and model the problem along with its assumptions which 

are first introduced parameters and variables of the problem. Next, a single-product problem with incremental discount 

is modeled. At the end, the multi-product multi-constraint inventory control problem with incremental discount is 

formulated to solve.  In section 3 and 4, MODM approaches and the solution procedures would be proposed. After 

tuning algorithm parameters in section 5, finally a numerical example is solved to demonstrate the applicability of 

proposed model analyze. 

 

2. Problem definition and modeling 
Commodity is the most significant character in a single period problem. In this paper, the chief goal such that 

constraints are satisfied would be maximizing both expected profit and minimized service level, simultaneously. 

Therefore, assumptions of the problem would be as below: 

(1) Only one period is considered to be. 

(2) Order opportunity is only once and only at the start of a period. 

(3) Client demand for each product (j) follows a uniform distribution. 

(4) Random variables are independents during demand for all products. 

(5) Order quantity of each product should be real. 

(6) There is no enforced constraint by the supplier to supply an order. 

(7) Entire capacity of the warehouse is assigned to the products. 

(8) Target intends to maximize both expected profit and minimized service level. 

(9) Shortage is licensable and takes the lost sale condition. 

(10) Shortage and holding costs are known and deployed at the end of the period. 

(11) Discount for purchasing items is allowed and follows either the incremental discount policy. 

(12) Since transportation and order-processing times are relatively very small compared with the cycle length, it is 

assumed that lead-time is equal to zero, which is common practice in newsboy problems. 

Since random variables are independent, in order to maximize both objects in a period, demand for the products is 

ordered at the beginning of the period. In addition, costs associated with the inventory control system are holding and 
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shortage, one needs to calculate expected inventory level and expected required storage space in each period. Firstly, 

parameters and variables of the model introduce; 

2.1. Problem parameters and variables 
Before developing the multi-constraint multi-product newsboy problem, Model parameters and variables are 

determined: 
:J  Number of products (j=1,2,…,J). 

:I  Number of break points (i=1,2,…,n). 

:jX  Stochastic demand of  jth product. 

:jQ  A decision variable exhibiting order quantity of  jth product. 

( ) :jE Q  Expected demand for  jth product. 

( ) :
jX jf x  Probability mass function of  jth product. 

:jP  Selling price of  jth product. 

:
jPC  Expected selling cost of  jth product. 

:jE  Expected revenue of  jth product. 

:jIL  Expected inventory of  jth product at the end of a period. 

:jh  Linear coefficient of holding cost of  jth product. 

:
jhC  Expected holding cost of  jth product at the end of a period. 

:jSH  Expected shortage cost of  jth product at the end of a period. 

:j  Linear coefficient of shortage cost of  jth product. 

:
j

C  Expected shortage cost of  jth product at the end of a period. 

:
jiq  ith discount break point of  jth product. 

:
jiC  Purchase cost of  jth product in ith break point. 

:
jIDC  Purchase cost of  jth product. 

:B  Total available budget. 

:jf  Space required for each packet of  jth product. 

:F  Total available warehouse space. 

1 :Z  Expected profit. 

2 :Z  Expected service level. 

In next section, a single-product problem is modeled and then it would be modified as a multi-product case. 

2.2. Profit modeling – first objective 
Revenue and costs (holding, shortage and purchase) equations which are involved to calculate the expected profit, 

should be introduced in a single-product problem. With considering total demand quantity is more than the order 

quantity in selling  jth product, the gained revenue is jQ  in a period; Otherwise, it is jX . In other words: 

(1) 
Sold quantity

,

,

j j j

j j j

Q X Q

X X Q


 


 

It is employed the probability mass function for  jth product to specify expected sold quantity and expected revenue of 

jth product at the end of a period: 

(2) 
0

( ) ( )
j

j j j
j j j

Q

P j X j j j X j j
X X Q

C X f x dX Q f x dX


 
    

(3) 
0

( ) ( )
j

j j
j j j

Q

j j j X j j j j X j j
X X Q

E P X f x dX P Q f x dX


 
    

Holding, shortage and purchasing are costs of the problem which they are determined consecutively. For computing 

these costs, the end-point expected inventory must be specified at the start of the period. Whenever total demand is 

less than the order quantity, then inventory quantity is j jQ X , else it will be zero at the end of a period. Hence: 
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(4) 
End-period inventory level of  jth product

,0

,

j j

j j j j

X Q

Q X X Q


 

 
 

Calculating expected inventory is mandatory for holding cost at the end of a period. The probability mass function of 

jth product is used in order to determine the expected inventory, therefore holding cost would be obtained as; 

(5) 
0
( ) ( )

j

j
j

Q

j j j X j j
X

IL Q X f x dX


   

(6) 
0

( ) ( )
j

j j
j

Q

h j j j X j j
X

C h Q X f x dX


   

Facing shortage during a period would miss sale opportunities. The expected shortage cost is calculated the same 

manner as modeling the holding cost at the end of a period. In this circumstance, shortage quantity will be
j jX Q , 

as total demand quantity is more than ordered quantity, else it will be zero. Therefore,  

(7) 
shortage quantity of  jth product

,

,0

j j j j

j j

X Q X Q

X Q

 
 


 

Whereupon, expected shortage and shortage cost at the end of a period are generated by: 

(8) ( ) ( )
j

j j
j j j X j j

X Q
SH X Q f x dX




   

(9) ( ) ( )
j j

j j
j j j X j j

X Q
C X Q f x dX 




   

Purchasing cost of  jth product at the beginning of a period can be calculated applying incremental discount policy. Let 

incremental discount policy be, 

(10) 

1 1

1 1 2 1 1 2

1 1 2 1 1

,0

,( )

,( ) ( )

j j

j j j j j j

j

j j j j j j j

j j

j j

ID

j n j n j n

C Q Q q

C q C Q q q Q q
C

C q C Q q C Q q Q q

 


   
 

      


 

Where 
jiq and , , ,: 1 2 ...

jiC i n are discount point and the purchasing costs for each units of jth product that 

corresponds to its ith discount break point, respectively. 

In order to include incremental discount policy in inventory model, Equation (11) is used to model the incremental 

discount policy; in which , , ,: 1 2 ...
jiV i n and , , ,1 2 ...j J are modeling variables to convert Equation (10) to 

Equation (11), 

 (11) 

1 1 2 2

1 2

1 2 1 1 1

2 1 3 2 2 1 2

1 2 1 1 2 1

1 2

...

...

( ) ( )

( ) ( )
...0 ,

, , , , , , , , ,... .0 1 0 : 1 2 : 1 2

j j j j j j j

j j j

j j j j j

j j j j j j j

j j j j j j j

j j j j j

j j

ID n n

j n

n n n n n n n
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C C V C V C V

Q V V V

q V q

q q V q q

q q V q q

V M

V i i n j j
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 
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

     

   

   

 

   

   

    

      ,.. ,J M  

 

2.3. Service Level modeling – second objective 

In second objective, minimized service level will be maximized. It is applied cumulative distribution function for 
thj  

product in order to calculate service level.  

(12) 
0

{ ( )} { } ( )
j j

j

X Q

j j j j X j jSL F Q P X Q f x dX


      

2.4. Constraints 
Constraints of the problem are budget and warehouse capacity. Budget constraint is determined with incremental 

discount policy as follows, 
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(13) 
1 1

j j

J n

i i

j i

C V B
 

  

Since required space for each packet of  jth product is 
2( )m

jf , and total available warehouse space is 
2( )mF , warehouse 

space constraint becomes, 

(14) 
0

( ) ( )
j j

j

X Q

j j j X j jQ X f f x dX F


   

In short, the bi-objective newsboy problem with incremental discount for a single-product will become as, 

(15) 

 
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j
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n
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 
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2.5. Final Model 
As a result, single product model in Equation (15), can be easily extended to a multi-product model in Equation (16), 

(16) 

   

 
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1 1
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j j X j j j j X j j
X X Q

j j

J nJ JQ
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3. MODM approaches 
Developed model in last section is a constrained bi-objective mixed integer nonlinear programming for newsboy 

problem. General configuration of mathematical model with n variables in vector 1 2
, ,,{ }nX x x x  is; 
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(17) 

, , , ,( ) 1 2

, , , ,. .: ( ) 0 1 2



 



j

i

n

Max f X j k

s t g X i m

X IR

 

Where k and m  represent the number of objective functions and constraints. An ideal solution for a problem modeled 

in (17) optimizes all the objective functions concurrently while all constraints are satisfied. Albeit, many problems in 

real world involve conflicting objectives such that a feasible solution cannot optimize all the objective functions 

simultaneously. Finally, decision makers seek an effective, preferred solution. 

In addition to multi-objective optimization approaches that provide Pareto fronts, various methods are accessible 

in the literature to solve multi-objective programming models. Initially, the model is solved by individual optimization 

method which gains an effective solution for each objective, exclusively. If all effective solutions are the same in 

terms of all constraints, an ideal overall solution is obtained. Then problem is converted to a single-objective 

optimization using LP metrics (global criteria; Hwang and Masud,1979) and Goal Attainment methods which are 

construed in next subsections. Eventually, single objective optimization would be solved by two meta-heuristic 

algorithms. 

3.1. LP metrics (global criteria) method 
The aim of this method is to obtain a solution that minimizes digression (D) between k objective function values 

in a multi-objective model (fj(X): j=1,2,…,k) and their corresponding ideal solution gained by individual optimization 

method (fj(X*): j=1,2,…,k) in maximization type. In other words, all the objectives must be converted into a 

maximization type in order to minimize ‘D’ defined as, 

(18) 

1

*

*

( ) ( )

( )
1

( )

P

j j

j

k
f X f X P

f X
j

Min D




 
  
 
  

Where P  would be selected ‘1 ’ in this paper. 

3.2. Goal attainment method 
This method has proposed by Gembiki (1975) and it tries to find a solution that minimizes the highest deviation 

(Z) between individual and overall objective functions values, where positive weights ( )jw  are assigned such that 

1
1

k

jj
w


 . In other words, the following mathematical problem is solved in this method, 

(19) *

, , ,. . : ( ) 0 ; 1 2

, , ,( ) ; 1 2 , :

i

j j j

Min Z

s t g x i m

f x w Z f j k Z free

 

  

 

In next section, meta-heuristic algorithms will be introduced to solve the model. 

4. Solution Procedures 
Since the model in Equation (16) is a mixed integer nonlinear programming, obtaining an analytical solution (if 

any exists) to the problem, especially in its large-scale form is difficult or even impossible to solve with exact methods 

(Kuk, 2004). As a result, stochastic research algorithms are used in this section to solve the model. However, as the 

model has two objectives, MODM approaches are first converted it to a single objective, and then single-objective 

evolutionary algorithms, such as GA and PSO are applied to solve the single-objective problem. Since no benchmark 

is available to assess its capability, performances of these algorithms are compared in terms of both solution quality 

and an attempt to get the verification. In next section, parameters of both algorithms are calibrated using RSM method. 

4.1. Genetic Algorithm (GA) 
The main information unit of any living organism is the gene, which is a part of a chromosome that determines 

specific traits such as eye-color, complexion, hair-color, and the like. The fundamental principle of the genetic 

algorithm, which was inspired by the concept of the survival of fittest, first was introduced by Holland (1975); 

however, the custom form of GA was presented by Goldberg in 1989 (Michaelraj and Shahabudeen, 2009). Since 

then, many researchers have applied and expanded this concept in different fields of study. In genetic algorithm, 

optimal solution is the conqueror of the genetic competition and any potential solution is assumed to be a creature 

determined by different parameters. These parameters are considered as genes of chromosomes that the nearest to the 

optimal solution would be selected as the better one. In practical applications, evolutionary process of species that 

reproduce and operate on a set of current solutions called a population. Populations of chromosomes are created 

randomly and number of these populations varies in each problem. Moreover, some hints about selecting proper 

number of population exist in different reports by Man et al. (1997). In each iteration, the crossover mechanism 
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generates new generation that combines genetic legacies of each parent. With some low probability, a portion of the 

new individuals, called offspring apply a random mutation. This process will pursue until a stopping criteria is 

satisfied. Then, best offspring is selected as a near optimum solution. The steps of GA utilized in this paper would be; 

(1) Set the parameters (population size Npop, crossover probability Pc, mutation probability Pm, selection strategy, 

crossover operation, mutation operation, and number of generations as stopping criteria). Some of these parameters 

are calibrated using RSM method in next section. 

(2) A chromosome is a J-dimensional vector that shows a possible solution (appropriate or non-appropriate) for order 

quantities of the products ( s)jQ .    

(3) A group of chromosomes is called population. Initial population containing Npop chromosomes is randomly 

generated.  

(4) Genetic operators such as crossover and mutation generate the next population. Single-point crossover operator is 

used with the probability of Pc on each chromosome. Moreover, mutation is applied with probability Pm on offspring 

that are generated using crossover operation. 

(5) Since chromosomes with better fitness should have a greater chance of selection than those with worse fitness, the 

roulette wheel selection method is used to evaluate new chromosomes whether a solution (represented by 

chromosomes) is appropriate or not. In this method, selection operates proportional to relative fitness of the 

chromosomes. Consequently, Npop chromosomes are chosen through parents and offspring according to their fitness 

function. It should be noted that after producing a new generation, both old and new generation are first sorted based 

on fitness function and surplus chromosomes are eliminated from the population. 

(6) Generation process is repeated until a predetermined number of generation is performed as a stopping criteria.  

4.2. Particle Swarm Optimization (PSO) Algorithm 
Kennedy and Eberhart (1995) presented PSO as an optimization technique firstly in 1995. Similar to GA, PSO is 

a powerful population-based search algorithm. They were inspired by social organism behavior such as fish schooling, 

bird flocking and swarming theory to investigate the effect of a group species cooperation in order to reach their aims. 

Dynamics of bird flocking were studied for years and it was shown that it is possible to employ this behavior as an 

optimization tool. In a PSO system, multiple solutions candidate co-exist and cooperate simultaneously. Each solution 

candidate, called a ‘particle’, probes in problem search space, searching for optimal position to land. A predefined 

function named fitness function is utilized to analyze performance of each particle which is usually proportional to 

the objective function. Every particle, considers both of its own and neighboring particles experience to optimize its 

position as time passes through its exploration. Particle’s experience is built up of tracking and memorizing the best 

position dealt (encountered). Consequently, PSO algorithm owns a memory (i.e. every particle memorize its best 

position achieved during entire process). In fact, PSO system attempts to balance exploration and exploitation by 

combining local search methods through self-experience with global search methods through neighboring experience. 

Assuming that search space is J-dimensional, the J-dimensional vector 1 2
, , ,...( )ij i i iJX x x x  represents ith particle 

of the swarm and the particle which found the best fitness function heretofore which is called the best particle of the 

swarm is denoted by index jg . 1 2
, , ,...( )ij i i iJP p p p demonstrates the best previous position of ith particle and the 

position change (velocity) of ith particle is represented by 1 2
, , ,...( )ij i i iJV v v v . The particles are operated according 

to the following Equations, 

(20)    1 1 2 2( 1) ( ) ( ) ( ) ( )ij ij ij ij j ijv t w v t r c p t x t r c g x t            

(21) ( 1) ( ) ( 1)ij ij ijx t x t v t     

Where i=1,2,…, Npop is swarm’s size, t is iteration number, and w is inertia weight. As experimental results confirm 

setting the inertia weight to a large value initially is beneficial to promote global exploration of search space, and then 

decrease it gradually to achieve refined solutions at final stage of the search (Eberhart and Shi, 2001). r1 and r2 are 

two random numbers uniformly distributed within the range [0,1]. c1 and c2 called cognitive and social parameter, 

respectively are two positive constants. Appropriate selection of w, c1 and c2 could result in a balance between global 

and local search. Equation (20) is employed to investigate particle’s new velocity according to its previous velocity 

and the distances of its current position from its own best historical position and the best found position by any particle. 

Then particle probes toward a new position according to Equation (21). This process is repeated until stopping criteria 

is satisfied. 
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5. Result and discussion 
Since quality of the solution obtained by any meta-heuristic algorithm such as GA and PSO depends on values of 

their parameters which are controllable factors, in this section, Response Surface Method (RSM) is employed to tune 

the parameters.  

Originally, RSM was developed to model experimental responses (Box and Draper, 1987), and then migrated into 

the modelling of numerical experiments. This method is a mathematical and statistical technique for empirical model 

building. By careful design of experiments, objective is to optimize a response (output variable) which is influenced 

by several independent variables (input variables). An experiment is a series of tests, in which changes are made in 

input variables in order to identify the reasons for changes in output response.  

Parameters that may have significant impacts on response are first selected for calibration. Then, using a trial and 

error procedure, the values that present proper fitness function are selected to implement the experiments. At the end, 

two levels are selected for the boundary of parameters to be considered in the experiments. In other words, four 

parameters each with two levels are considered in calibration process of both PSO and GA. Tables 1. shows the 

parameters along with their tuned. A numerical example with three break points of incremental discount and different 

size of products with basic data for thirty runs is considered for a typical calibration. 

Comparing results reveals that GA verifies approximate optimal solutions obtained by PSO. It should be noted 

that best levels of parameters are dependent and alter when different problems along with different sizes are 

investigated. Moreover, all programming codes are written in MATLAB R2014a and parameters are tuned by Design 

Expert 7.0.0, where a Laptop with 2.50 GHz Intel Core i5-3210M CPU, and 4 GB of RAM memory is used for all 

calculations. 

 

Table 1. Parameters along with tuned Parameters 

MODM LP-Metrics Goal Attainment 

Algorithm GA PSO GA PSO 

Variables Range Tuned Range Tuned Range Tuned Range Tuned 

Npop  100 ~ 250 250 100 ~ 300 264 150 ~ 350 272 150 ~ 300 292 

Pc  0.5 ~ 0.9 0.9 0.4 ~ 1.2 0.62 0.55 ~ 0.9 0.89 0.4 ~ 1.15 1.08 

Pm  0.01 ~ 0.1 0.01 0.75 ~ 1 0.76 0.01 ~ 0.34 0.17 0.75 ~ 1 0.93 

iteration  500 ~ 1000 809 1.12 ~ 2.83 2.04 680 ~ 2000 1509 1.12 ~ 2.95 1.44 

5.1. Numerical Examples 
For better solution verification of both algorithms, thirty numerical problems with three break points of 

incremental discount are considered on which both parameter-tuned GA and PSO are applied that are listed in Table 

1. Instances are employed for seven to fifteen products with their parameters that are randomly changing based on a 

Uniform distribution within the corresponding intervals which are exhibited in Table 2. Each problem is solved 

different times using each algorithm with each MODM approach. The best solution in terms of quality is chosen for 

comparison. Results for a 15-product instance fitting MODM approaches by using GA and PSO are depicted in Figure 

1 and 2 which horizontal axial shows Number of Function Evaluation (NFE). 

 

Table 2. Model Parameters  

Variable jP  jh   j  jf  
jiC  

jiq  

Distribution ~ [30,70]u  ,~ [115]u  ~ [4,15]u  ~ [2,15]u  ~ [10,50]u  ,~ [0 100]u  

 

 
Figure 1. Results of MODM approaches using GA 
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Figure 2. Results of MODM approaches using PSO 

5.2. Statistical comparison  
After running examples and collecting related data, obtained information is analyzed by statistical software SPSS 

statistics 21. Comparing results in Table 3 illustrates that between two MODM approaches via GA and PSO by 

utilizing statistical t-student test ( 0.05)  for independent groups in both objectives are the same statistically, which 

means that there is no meaningful statistical differences between approaches and algorithms on calculations of both 

objectives. Moreover, in terms of solution quality (the approximate optimal order quantities), results obtained by PSO 

in Goal attainment method and obtained by GA in LP metrics method would be better than the results in GA within 

the Goal attainment method and in PSO within the LP metrics method for both objectives.  

 

Table 3. Independent Group Test Information 

Group Algorithm MODM Objective Runs Mean 
Std. Error 

Difference 
df  t-student 

1 
GA 

LP-metrics 1th 30 
1007.957 

58.68 58 0.174 
PSO 997.709 

2 
GA 

LP-metrics 2th 30 
0.259 

0.009 58 -0.9 
PSO 0.268 

3 
GA 

GoalAttainment 1th 30 
1113.09 

65.91 58 -0.327 
PSO 1134.67 

4 
GA 

GoalAttainment 2th 30 
0.2385 

0.0132 58 0.437 
PSO 0.2327 

5.3. Validation 
Some numerical instances with both of MODM approaches are analyzed by GAMS 23.6 software which is an 

exact solution method to validate the results obtained from GA and PSO. Table 4. Shows that there is no significance 

discrepancy between both of objective functions in GAMS, GA and PSO. In addition, GA and PSO generate 

approximately optimized solution for different sizes while GAMS could usually solve the problems in lower sizes. 

 

Table 4. Results validation 

 1th objective 2th objective 

LP metrics Goal Attainment LP metrics Goal Attainment 

Prods GA PSO GAMS GA PSO GAMS GA PSO GAMS GA PSO GAMS 

7 592.47 546.23 626.21 613.99 580.97 661.87 0.27 0.29 0.37 0.24 0.29 0.24 

8 768.17 889.33 924.82 852.61 903.35 992.84 0.32 0.27 0.55 0.21 0.27 0.43 

9 1044.5 1001.9 903.99 1227.4 1370.9 951.40 0.28 0.29 0.46 0.24 0.33 0.39 

10 1061.9 1160.3 973.92 1229.2 1159.3 1015.8 0.23 0.26 0.47 0.22 0.32 0.41 

11 1132.1 1037.3 1046.7 1215.1 1261.4 1105.1 0.24 0.26 0.38 0.23 0.18 0.26 

12 828.15 849.81 888.11 1018.7 1054.9 950.19 0.28 0.25 0.34 0.22 0.19 0.25 

13 1063.3 1307.3 - 1176.8 1336.6 - 0.265 0.22 - 0.24 0.21 - 

14 1149.2 1033.1 - 1174.4 1201.2 - 0.22 0.21 - 0.23 0.12 - 

15 1335.3 1293.7 - 1513.1 1632.2 - 0.22 0.26 - 0.16 0.21 - 

6. Conclusion 
In this research, a bi-objective single-period problem under incremental discount was investigated. The problem 

was modelled on multi-product with budget and warehouse capacity constraints. The aim of this paper was to 

determine the order quantities such that expected profit and minimized service level were maximized. The problem 

was formulated into a mixed integer nonlinear programming and it was solved using two MODM approaches via two 

meta-heuristic algorithms. In section 5, parameters of both algorithms were tuned using RSM method and then tuned 
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algorithms were compared based on t-student test applying various numerical problems of different sizes in order to 

optimize both objectives which were provided to demonstrate the application and to compare the performance of both 

algorithms in both approaches. Moreover, the solution procedures were validated by GAMS program up to twelve 

products. It could be mentioned that this paper contributes in decision making of order quantities in the inventory 

control in a large number of industrial cycles.  

For future work extensions, the followings are recommended 

(1) Parameters of the model can be investigated in fuzzy form to bring the application closer to reality.   

(2) It could be considered a parameter-tuned bi-objective meta-heuristic algorithm such as MOPSO, NSGA-II, etc to 

find Pareto solutions. 

(3) In addition to mentioned constraints, further constraints such as transportation costs and total discount could be 

attended. 

(4) Taguchi method can be employed to tune the parameters of algorithms as well. 
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