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Abstract 
 

The mobile collection system of blood products is considered in this study. Blood centers often use 
bloodmobiles that park near crowded places where donors can donate blood directly. We propose the use 
of additional vehicles, called shuttles, that pick up the collected blood by the bloodmobiles. Hence, 
bloodmobiles can continue their tours without having to return to the blood center. The system manager 
must decide the set of sites to visit by the bloodmobiles among a group of potential sites, and to determine 
the tours of the vehicles responsible for this operation. In this paper, the blood mobile collection system is 
modelled as a vehicle routing problem with profits. The objective is to minimize the total routing, wastage 
and shortage costs. Each collection site has a random potential blood quantity that is modeled as a stochastic 
profit which can be collected by a vehicle when it visits this site. A Two-Stage Stochastic Model with 
recourse is developed to represent the problem using a scenario-based approach. The fast-forward selection 
algorithm is implemented to reduce the set of scenarios.  Experiments are performed considering Poisson 
distributed profits. 
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1. Introduction 
Blood has different functions including the transportation of oxygen and nutrients to the lungs and tissues [1]. The 
main transfusable blood components are: red blood cells, platelets, plasma and cryoprecipitated AHF condition [2]. 
These components can be mechanically separated from a unit of Whole Blood (WB), or can be obtained using 
apheresis, an automated procedure that can filter only the desired components from the blood of donors [3]. WB and 
blood components are necessary for cancer treatments, surgeries, organ transplants, among others. The Blood Supply 
Chain (BSC) controls the flow of blood products from donors to patients. The aim of the BSC is to ensure that blood 
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units are available when they are required by a person. The BSC consists of five echelons: donors, mobile donation 
sites, Blood Centers (BC), hospitals and patients. BC and hospitals are responsible for the collection, testing, 
processing, storage, distribution and transfusion processes. 

Donations are the only source because blood cannot be produced in a synthetic way. Donations are obtained from 
donor at a BC or through bloodmobiles which park near universities, companies or crowded places. The 2013 AABB 
Blood Survey estimates that 13.6 million Whole Blood (WB) and red blood cells units were collected in US, a 
significant decline of 12.1% than 2011. On the contrary, the transfusion of platelets was 15.4% more in 2013 than 
2011 [4]. On the one hand, considering the scarcity of blood products and the costs associated with collecting, 
processing and transporting, the wastage of this resource is undesirable. On the other hand, shortage is also undesirable 
since it may cause deaths and many patients suffering from ill-health [5]. For these reasons, optimizing process in the 
BSC is considered of vital importance.   

The Vehicle Routing Problem with Profits (VRPP) is considered to model the decisions of selecting the mobile 
donation sites and routing blood vehicles. VRPP is a variant of Vehicle Routing Problem (VRP) introduced by 
Dantzing and Ramser in 1959 [6]. The VRP can be defined as the problem of designing optimal delivery or collection 
routes from one or several depots to a number of geographically scattered customers, subject to constraints [7]. The 
key characteristic of VRPP is that, contrary to what happens for the classical VRP, it is not mandatory to visit the 
whole set of customers [8]. The first decision to take in the VRPP is which customers to visit. The second one is the 
routes of the vehicle fleet to serve the selected customers. In general, a profit is associated with each customer that 
makes such a customer more or less attractive [8]. Any route or set of routes can be measured both in terms of costs 
and in terms of profit. Basic problems of this class with only one route are known in the literature as the Traveling 
Salesman Problem with Profits (TSPP). 

The number of donation units over a time horizon is uncertain. Considering the supply as an uncertain parameter 
allows to make better decisions than defining it as deterministic. Stochastic Programming is used to find an optimal 
decision in environments with random parameters in which their probability distributions are known [9]. One way to 
model stochastic problems is through probabilistic (also called chance) constraints [10]. Consider 𝐴𝐴, 𝑥𝑥, and 𝑏𝑏 are 𝑚𝑚 ×
𝑛𝑛 matrix, 𝑛𝑛-vector, and 𝑚𝑚-vector, respectively. Let 𝐴𝐴𝐴𝐴 ≥  𝑏𝑏 be a deterministic linear constraint in which 𝑥𝑥 is the 
decision variable vector. Assuming uncertainty for matrix 𝐴𝐴, then 𝑃𝑃(𝐴𝐴𝐴𝐴 ≥  𝑏𝑏) ≥ 𝛼𝛼 is a probabilistic linear constraint 
saying that 𝐴𝐴𝐴𝐴 ≥  𝑏𝑏  should be satisfied with a pre-specified probability 𝛼𝛼 ∈  (0,1)  [9]. For modeling stochastic 
problems, the two-stage and multi-stage programs with recourse are also used. In two-stage stochastic linear 
programming problems, we have a set of decisions 𝑥𝑥 to be taken without full information on some random events 𝜉𝜉. 
Later, full information is received on the realization of vector 𝜉𝜉. Then, corrective actions 𝑦𝑦 are taken. The linear 
programming equivalent for the two-stage problem is developed considering that 𝜉𝜉 has a finite number of scenarios 
𝜉𝜉𝑘𝑘   with respective probabilities 𝑝𝑝𝑘𝑘 , 𝑘𝑘 = 1, . . ,𝐾𝐾 [10]. The two-stage stochastic programs can be extended to a multi-
stage setting. In the multi-stage setting, the uncertain data 𝜉𝜉1, . . . , 𝜉𝜉𝑇𝑇   is revealed gradually over time, in 𝑇𝑇 periods, and 
decisions should be adapted to this process [10]. 

 
The rest of the document is structured as follows. In the next section, a brief review of existing literature related to 
decision-making in BSC as well as modelling approaches dedicated to stochastic studies is presented. Section 3 defines 
the problem and present the model formulation. In section 4, a scenario reduction algorithm is stated. Numerical results 
are given in section 5. Finally, concluding remarks and opportunities for future work are presented in section 6.  
 
2. Literature review 
Some authors have conducted literature reviews on BSC. Beliën et al. [3] present a review of papers published until 
2010. In this document, Beliën et al. [3] classify the material according to product type, solution method, supply chain 
echelon, performance measures and practical implementation/study cases considered in articles. Osorio et al. [11] 
developed a literature review paper of the BSC, which covers papers published up to 2014. Osorio classifies the 
reviewed documents according to the echelons considered in the supply chain and the processes. In general, the authors 
mentioned above, expose that main problems in BSC are the location and routing of mobile donation sites and the 
inventory management.  

The location of mobile donation sites is studied in the literature by Chaiwuttisak et al. [12], Alfonso et al. [13], Zahiri 
et al. [14], Ramezanian et al. [15] and Arvan et al. [16]. Zahiri is the only author who considers both the supply and 
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demand as stochastic parameters. In this study, Zahiri develops a Mathematical Programming Model using Chance-
Constrained Programming. The problem of routing mobile donation sites, considering deterministic parameters, has 
been studied by authors such as Mobasher et al. [17], Sahinyazan et al. [18], Ganesh et al. [19], Ghandforoush et at. 
[20], Gunpinar et al. [21] and Hemmelmayr et al. [22]. Sahinyazan formulates the problem as a VRPP and develops 
heuristics to find near-solutions. Gunpinar uses Mixed Integer Linear Programming to model the exposed problem 
and the remaining authors develop heuristics or metaheuristics additionally as approximation methods.  

Rabbani et al. [23] and Zahiri et al. [24] study the problem of location and routing mobile donation sites. Zahiri 
considers the donation quantity and the demand as stochastic parameters and formulated the problem as a Mixed 
Integer Linear Program. Rabbani considers the number of donors as a fuzzy parameter and develops a Fuzzy 
Mathematical Programming Model to obtain solutions for small instances, and for larger instances the authors propose 
a Simulated Annealing (SA). 

To our knowledge, there are few articles that include uncertain parameters in the BSC optimization. This paper deals 
with the VRP with stochastic profits and proposes a mathematical model to determine where to locate mobile 
collection sites in order to minimize shortage and wastage levels. The next section details the developed model.  

3. Model formulation 
 

3.1. Description of the mobile collection system and notation 

Bloodmobiles have the necessary equipment and staff for the blood donation procedure. From a set of potential sites, 
the BC determines the location of bloodmobiles on each period of a planning horizon. Blood collection at the selected 
site is a whole day activity including the traveling, set-up and collection times [18]. That is, a bloodmobile cannot 
visit multiple locations in a day. Each site has a potential donation or supply associated with the day the collection 
activities are performed on that location. Due to the perishability of WB, the blood units need to be transported to the 
BC for testing and processing within a maximum of 24 hours after its collection [25]. In a regular configuration of the 
mobile collection system, bloodmobiles should return to the BC with the collected blood at the end of each period. 
Some authors in the literature propose also including a vehicle called shuttle, in addition to the regular bloodmobile 
[18], [20], [23], [26]. The main function of the shuttles is to transport the collected WB from bloodmobiles to the BC 
at the end of each day. With the help of shuttles, the bloodmobile only returns to BC at the end of the planning horizon 
or the day when the bloodmobile has no scheduled collection activities at any location. Another activity related to 
shuttles is to supply bloodmobiles with the necessary inputs for the next period collection activities. The system 
manager must decide: (1) potential sites to be visited by the bloodmobiles and (2) the tours of bloodmobiles and 
shuttles to collect a desired amount of blood minimizing the shortage and wastage levels in the BSC. The quantities 
of blood products to be collected in a period by bloodmobiles are determined by the inventory models of BC and 
hospitals.  
 
The Vehicle Routing Problem with Profits (VRPP) adapted to blood mobile donation system is defined as follows. 
Let 𝐺𝐺 = (𝑉𝑉,𝐴𝐴) be a complete weighted and directed graph where 𝑉𝑉 = {1, … ,𝑁𝑁} is a set of 𝑁𝑁 nodes and 𝐴𝐴 is a set of 
arcs. Nodes 2, … ,𝑁𝑁 − 1 are potential sites to visit, whereas nodes 1 and 𝑁𝑁 correspond to starting and end points of 
the paths to build respectively. A fleet of 𝐾𝐾 identical bloodmobiles and a fleet of 𝐹𝐹 identical shuttles are available at 
node 1. Let 𝐻𝐻 = {1, … ,𝑇𝑇} be the planning horizon where periods are indexed by 𝑡𝑡. Let a nonnegative blood collection 
potential 𝑝𝑝𝑖𝑖  be associated with each node 𝑖𝑖 ∈ 𝑉𝑉, with 𝑝𝑝1 = 0 and 𝑝𝑝𝑁𝑁 = 0, and 𝑐𝑐𝑖𝑖𝑖𝑖  be associated with the distance of 
each arc (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴. Each bloodmobile and shuttle have a collection capacity 𝑄𝑄𝑄𝑄 and 𝑄𝑄𝑄𝑄 respectively. Let 𝑑𝑑𝑡𝑡 represent 
the desired value for blood to be collected in the period 𝑡𝑡.  If the total collection potential of nodes visited in the period 
𝑡𝑡 is greater than 𝑑𝑑𝑡𝑡, the bloodmobiles only collect a quantity equal to 𝑑𝑑𝑡𝑡. A wastage cost 𝜇𝜇 is generated for each unit 
not collected at the visited nodes. Conversely, if the amount collected is less than 𝑑𝑑𝑡𝑡 , a shortage cost 𝜎𝜎 is caused for 
each missing unit. The goal is to determine the tours of blood mobiles and shuttles in the planning horizon, to minimize 
the total cost. This problem can be formulated as an integer programming model with the following decision variables: 
 
𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 if the bloodmobile 𝑘𝑘 travels from node 𝑖𝑖 to node 𝑗𝑗 in the period 𝑡𝑡, 0 otherwise. 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 if the shuttle 𝑓𝑓 travels from node 𝑖𝑖 to node 𝑗𝑗 in the period 𝑡𝑡, 0 otherwise. 
𝑦𝑦𝑖𝑖𝑖𝑖 = Collected units at node 𝑖𝑖 in the period 𝑡𝑡. 
𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 = Collected units up to node 𝑖𝑖 by the shuttle 𝑓𝑓 in the period 𝑡𝑡. 
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𝑤𝑤𝑖𝑖𝑖𝑖  = Units, associated with wastage, not collected at node 𝑖𝑖 in the period 𝑡𝑡. 
𝑙𝑙𝑡𝑡 = Units of unsatisfied demand, associated with shortage, in the period 𝑡𝑡. 
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𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1};      ∀𝑖𝑖 ∈ 𝑉𝑉,     ∀𝑗𝑗 ∈ 𝑉𝑉,     ∀𝑘𝑘 ∈ {1, … ,𝐾𝐾},     ∀𝑡𝑡 ∈ {1, … ,𝑇𝑇} (17) 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1};      ∀𝑖𝑖 ∈ 𝑉𝑉,     ∀𝑗𝑗 ∈ 𝑉𝑉,     ∀𝑓𝑓 ∈ {1, … ,𝐹𝐹},     ∀𝑡𝑡 ∈ {1, … ,𝑇𝑇} (18) 

 𝑦𝑦𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑖𝑖𝑖𝑖 ∈ ℝ+;      ∀𝑖𝑖 ∈ 𝑉𝑉,     ∀𝑡𝑡 ∈ {1, … ,𝑇𝑇} (19) 
 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 ∈ ℝ+;      ∀𝑖𝑖 ∈ 𝑉𝑉,     ∀𝑓𝑓 ∈ {1, … ,𝐹𝐹},     ∀𝑡𝑡 ∈ {1, … ,𝑇𝑇} (20) 

 𝑙𝑙𝑡𝑡 ∈ ℝ+;      ∀𝑡𝑡 ∈ {1, … ,𝑇𝑇} (21) 
 

Constraints (2) guarantee that the bloodmobiles are located at the BC at the beginning of the planning horizon. 
Constraints (3) state that the maximum number of sites to visit in a period is the number of available bloodmobiles. 
All bloodmobiles must return to the BC at the end of the planning horizon because of constraints (4). Constraints (5) 
and (6) guarantee flow conservation of each bloodmobile tour. Each potential site is visited at most once in the 
planning horizon because of constraints (7). Constraints (8) state that the collected blood units cannot exceed the 
capacity of bloodmobiles. Constraints (9) are used to define the demand satisfaction and to compute the shortage 
levels. With constraint (10), it is defined if a site needs a visit of a shuttle. Constraints (11) and (12) guarantee that if 
a bloodmobile leaves the BC, it must end at node 𝑁𝑁. Constraints (13) guarantee flow conservation of each shuttle tour. 
With constraints (14), it is defined the collected units by the shuttles. Constraints (15) state that the capacity of shuttles 
cannot be exceeded. Constraints (16) prevent subtours. Finally, constraints (17) - (21) fix the nature of variables.  

3.2. Two-stage stochastic programming model for the mobile collection system 

The uncertainty in the number of collected blood units, or profits, in a potential site is formulated using a Two-Stage 
Programming Model. We follow the notation proposed by Shapiro et al. [10]. Two-stage stochastic linear 
programming problems are of the form, 

 
min
𝑥𝑥∈ℝ𝑛𝑛

𝑐𝑐⊺ 𝑥𝑥 + 𝔼𝔼[𝑄𝑄(𝑥𝑥, 𝜉𝜉)] 
s. t.     𝐴𝐴𝐴𝐴 = 𝑏𝑏,    𝑥𝑥 ≥ 0, 

(22) 

 
where 𝑄𝑄(𝑥𝑥, 𝜉𝜉) is the optimal value of the second-stage problem, 

min
𝑦𝑦∈ℝ𝑛𝑛

𝑞𝑞⊺ 𝑦𝑦 

s. t.     𝑇𝑇𝑇𝑇 + 𝑊𝑊𝑊𝑊 = ℎ,     𝑦𝑦 ≥ 0. 
(23) 

 
Here 𝜉𝜉 ≔ (𝑞𝑞, ℎ,𝑇𝑇,𝑊𝑊) are the data of the second stage problem. Some or all elements of vector 𝜉𝜉 are viewed as 
random. A set of decisions must be taken without full information on random events. These decisions are called first-
stage decisions and are represented by the vector 𝑥𝑥. Later, full information is received on the realization of vector 𝜉𝜉. 
Then, second-stage decisions or corrective actions 𝑦𝑦 are taken. In this model, the fist-stage decisions are to determine 
the bloodmobiles and shuttles used each period and their tours. In the second-stage the profit realizations are reveled, 
and recourse cost are imposed based on corrective actions. These corrective actions are associated with the not 
collected units from the site and the units of unsatisfied demand. The recourse costs are denoted as waste and shortage 
costs. 

 
The expected value function 𝜙𝜙(𝑥𝑥) ≔ 𝔼𝔼[𝑄𝑄(𝑥𝑥, 𝜉𝜉)] is taken with respect to the probability distribution of random vector 
𝜉𝜉. To proceed with numerical calculations, it is considered that 𝜉𝜉𝑖𝑖 represents the profit of each site 𝑖𝑖, ∀𝑖𝑖 ∈ 𝑉𝑉, with a 
specified probability distribution and a finitely number of realizations. According to the realizations of 𝜉𝜉𝑖𝑖, the scenario 
set Ω is considered, where 𝜔𝜔 = (𝜉𝜉1𝜔𝜔, … , 𝜉𝜉𝑁𝑁𝜔𝜔), ∀𝜔𝜔 ∈ {1, … ,Ω} and their associated joint discrete probabilities ℙ(𝜔𝜔) =
∏ ℙ(𝜉𝜉𝑖𝑖𝜔𝜔)𝑁𝑁
𝑖𝑖=1 ,∀𝜔𝜔 ∈ {1, … ,Ω}. In the model, the probability associated with each scenario is represented by 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝜔𝜔. 

This Stochastic Programming Model consider the definition of parameters and variables given in section 2.1., except 
for the parameter 𝑝𝑝𝑖𝑖 , replaced by 𝜉𝜉𝑖𝑖𝜔𝜔 and defined as the available units to be collected at site 𝑖𝑖 ∈  𝑉𝑉 ∖ {1,𝑁𝑁} for the 
scenario 𝜔𝜔 ∈ {1, … ,Ω}. The variables 𝑦𝑦𝑖𝑖𝑖𝑖, 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖, 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝑙𝑙𝑡𝑡 associated to second-stage decisions are replaced by, 

 
𝑦𝑦𝑖𝑖𝑖𝑖𝜔𝜔 = Collected units at node 𝑖𝑖 in the period 𝑡𝑡 for the scenario 𝜔𝜔. 
𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝜔𝜔  = Collected units up to node 𝑖𝑖 by the shuttle 𝑓𝑓 in the period 𝑡𝑡 for the scenario 𝜔𝜔. 
𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔 = Units not collected at node 𝑖𝑖 in the period 𝑡𝑡 for the scenario 𝜔𝜔. 
𝑙𝑙𝑡𝑡𝜔𝜔 = Units of unsatisfied demand in the period 𝑡𝑡 for the scenario 𝜔𝜔. 
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The objective function (1) is replaced by, 

 

Min �����𝑐𝑐𝑖𝑖𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇

𝑡𝑡=1

𝐾𝐾

𝑘𝑘=1

𝑁𝑁

𝑗𝑗=2

𝑁𝑁−1

𝑖𝑖=1

+ ����𝑐𝑐𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇

𝑡𝑡=1

𝐹𝐹

𝑓𝑓=1

𝑁𝑁

𝑗𝑗=2

𝑁𝑁−1

𝑖𝑖=1

+ �𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝜔𝜔 �𝜎𝜎� 𝑙𝑙𝑡𝑡𝜔𝜔
𝑇𝑇−1

𝑡𝑡=1

+ 𝜇𝜇��𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔
𝑇𝑇−1

𝑡𝑡=1

𝑁𝑁−1

𝑖𝑖=2

�
Ω

𝜔𝜔=1

� (24) 

 
The aim of the two-stage model is to find the tours of bloodmobiles in the planning horizon and shuttles in each period 
such that the first-stage cost, corrected by the expected second-stage waste and shortage costs, is minimized subject 
to constraints (2) – (7), (10) – (13), (16) – (18) and equations (8), (9), (14), (15) and (19) – (21) are replaced by the 
following constraints respectively, 

 

𝑦𝑦𝑖𝑖𝑖𝑖𝜔𝜔 = ���𝜉𝜉𝑖𝑖𝜔𝜔 ∙ 𝑏𝑏𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝐾𝐾

𝑘𝑘=1

𝑁𝑁−1

𝑗𝑗=1

� − 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔 ≤ 𝑄𝑄𝑄𝑄;           ∀𝑖𝑖 ∈ 𝑉𝑉 ∖ {1,𝑁𝑁},     ∀𝑡𝑡 ∈ {1, … ,𝑇𝑇 − 1},     ∀𝜔𝜔 ∈ {1, … ,Ω} (25) 

�𝑦𝑦𝑖𝑖𝑖𝑖𝜔𝜔
𝑁𝑁−1

𝑖𝑖=2

= 𝑑𝑑𝑡𝑡 − 𝑙𝑙𝑡𝑡𝜔𝜔;           ∀𝑡𝑡 ∈ {1, … ,𝑇𝑇 − 1},     ∀𝜔𝜔 ∈ {1, … ,Ω} (26) 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝜔𝜔 + 𝑦𝑦𝑗𝑗𝑗𝑗𝜔𝜔 − 𝑀𝑀 ∙ �1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� ≤ 𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗𝜔𝜔 ;      ∀𝑖𝑖 ∈ 𝑉𝑉 ∖ {𝑁𝑁},∀𝑗𝑗 ∈ 𝑉𝑉 ∖ {1,𝑁𝑁}, 
(27) 

 ∀𝑓𝑓 ∈ {1, … ,𝐹𝐹},∀𝑡𝑡 ∈ {1, … ,𝑇𝑇 − 1},∀𝜔𝜔 ∈ {1, … ,Ω} 
𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝜔𝜔 ≤ 𝑄𝑄𝑄𝑄;          ∀𝑖𝑖 ∈ 𝑉𝑉 ∖ {1,𝑁𝑁},     ∀𝑓𝑓 ∈ {1, … ,𝐹𝐹},     ∀𝑡𝑡 ∈ {1, … ,𝑇𝑇 − 1},     ∀𝜔𝜔 ∈ {1, … ,Ω} (28) 

 𝑦𝑦𝑖𝑖𝑖𝑖𝜔𝜔,𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔 ∈ ℝ+;      ∀𝑖𝑖 ∈ 𝑉𝑉,     ∀𝑡𝑡 ∈ {1, … ,𝑇𝑇},     ∀𝜔𝜔 ∈ {1, … ,Ω} (29) 
 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝜔𝜔 ∈ ℝ+;      ∀𝑖𝑖 ∈ 𝑉𝑉,     ∀𝑓𝑓 ∈ {1, … ,𝐹𝐹},     ∀𝑡𝑡 ∈ {1, … ,𝑇𝑇},     ∀𝜔𝜔 ∈ {1, … ,Ω} (30) 

 𝑙𝑙𝑡𝑡𝜔𝜔 ∈ ℝ+;      ∀𝑡𝑡 ∈ {1, … ,𝑇𝑇},     ∀𝜔𝜔 ∈ {1, … ,Ω} (31) 
 

4. The scenario reduction 
In order to proceed with numerical calculations in the two-stage stochastic programming model, it is necessary to 
make a discretization of the random profit. Such discrete approximations allow the construction of the scenario set. 
The dimension of the model grows exponentially with the number of involved scenarios [27]. For this reason, the 
reduction of the scenario set is an indispensable problem to consider in this study. 

Finding the optimal scenario set with a fixed number of scenarios to eliminate is a hard-combinatorial optimization 
problem [27]. Heitsch and Römisch [28] have developed two heuristics based on fast forward selection (FFS) and 
simultaneous backward reduction (SBR) techniques, to handle this problem. Some considerations are presented below 
to introduce the algorithm implemented in this study for the scenario reduction. 

Let the probability distribution 𝑄𝑄  be discrete with many scenarios 𝜔𝜔𝑖𝑖 ∈ Ω , weights 𝑞𝑞𝑖𝑖 > 0 , 𝑖𝑖 = 1, … , |Ω|  and 
∑ 𝑞𝑞𝑖𝑖

|Ω|
𝑖𝑖=1 = 1. Let 𝑛𝑛 < |Ω|, 𝐽𝐽 ⊂ {1, … , |Ω|}, where 𝐽𝐽 represents the index set of eliminated scenarios, with #𝐽𝐽 = |Ω| − 𝑛𝑛 

and consider the probability measure 𝑄𝑄�  having scenarios 𝜔𝜔𝑗𝑗 , 𝑗𝑗 ∈ {1, … , |Ω|} ∖ 𝐽𝐽. The new probabilistic weights 𝑞𝑞�𝒋𝒋 are 
assigned to each scenario 𝜔𝜔𝑗𝑗 , 𝑗𝑗 ∈ {1, … , |Ω|} ∖ 𝐽𝐽 according to the minimal distance, 

𝐷𝐷𝐾𝐾�𝑄𝑄,𝑄𝑄�� = �𝑞𝑞𝑖𝑖 ⋅ min
𝑗𝑗∉𝐽𝐽

 𝑐𝑐(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗)
𝑖𝑖∈𝐽𝐽

 

𝐷𝐷𝐾𝐾  represents the Monge-Kantorovich distance between two finite discrete probability distributions 𝑄𝑄 and  𝑄𝑄�  where 
𝑐𝑐�𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗� = �𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑗𝑗�𝑛𝑛  measure the distance between scenario realizations and ‖⋅‖  denotes the norm on ℝ𝑛𝑛 .  
Moreover, the minimum is attained with the probability 𝑞𝑞�𝒋𝒋 of the preserved scenarios 𝜔𝜔𝑗𝑗 of 𝑄𝑄� , 𝑗𝑗 ∉ 𝐽𝐽, and is given by 
the following optimal redistribution rule exposed by Heitsch and Römisch [28], 
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𝑞𝑞�𝒋𝒋 = 𝑞𝑞𝑗𝑗 + � 𝑞𝑞𝑖𝑖
𝑖𝑖∈𝐽𝐽(𝑖𝑖)

, (32) 

Where 𝐽𝐽(𝑖𝑖) = {𝑖𝑖 ∈ 𝐽𝐽: 𝑗𝑗 = 𝑗𝑗(𝑖𝑖)}  and, respectively, 𝑗𝑗(𝑖𝑖) ∈ arg min
𝑗𝑗∉𝐽𝐽

𝑐𝑐�𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗�,∀𝑖𝑖 ∈ 𝐽𝐽 . The optimal redistribution rule 
exposes that the new probability of a preserved scenario is equal to the sum of its initial probability and of all 
probabilities of deleted scenarios that are closest to it considering the distance measure 𝑐𝑐. 

Heitsch and Römisch [28] state that the complexity 𝑓𝑓|Ω|(𝑛𝑛) of FFS increases with increasing 𝑛𝑛 and it is maximal when 
𝑛𝑛 = |Ω|. On the contrary, the complexity 𝑏𝑏|Ω|(𝑛𝑛) of SBR increases with decreasing 𝑛𝑛 and it is minimal when 𝑛𝑛 =
|Ω|. Thus, the use of FFS is recommendable if the number of remaining scenarios 𝑛𝑛 satisfies the condition 𝑓𝑓|Ω|(𝑛𝑛) ≤
𝑏𝑏|Ω|(𝑛𝑛). The authors also state that the number 𝑛𝑛∗ such that 𝑓𝑓|Ω|(𝑛𝑛∗) = 𝑏𝑏|Ω|(𝑛𝑛∗) is 𝑛𝑛∗ ≈

|Ω|
4

 for large |Ω|. In this study, 

𝑛𝑛 ≪ |Ω|
4

 and we decide to implement the FFS algorithm instead of SBR. This decision is supported in more detail in 
section 5. 

With the notation exposed above, the FFS algorithm is given by, 

Algorithm 1. Fast forward selection. Source: Heitsch and Römisch [28] 
Step 1: 𝑐𝑐𝑘𝑘𝑘𝑘

[1] ≔ 𝑐𝑐�𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗�;∀𝑘𝑘,𝑢𝑢 ∈ {1, … , |Ω|} 

𝑧𝑧𝑢𝑢
[1] ≔ �𝑞𝑞𝑘𝑘𝑐𝑐𝑘𝑘𝑘𝑘

[1]
|Ω|

𝑘𝑘=1
𝑘𝑘≠𝑢𝑢

;𝑢𝑢 ∈ {1, … , |Ω|} 

𝑢𝑢1 ∈ arg min
𝑢𝑢∈{1,…,𝑁𝑁}

𝑧𝑧𝑢𝑢
[1] , 𝐽𝐽[1] ≔ {1, … , |Ω|} ∖ {𝑢𝑢1} 

Step i: 𝑐𝑐𝑘𝑘𝑘𝑘
[𝑖𝑖] ≔ min{𝑐𝑐𝑘𝑘𝑘𝑘

[𝑖𝑖−1], 𝑐𝑐𝑘𝑘𝑢𝑢𝑖𝑖−1
[𝑖𝑖−1] } ;∀𝑘𝑘,𝑢𝑢 ∈ 𝐽𝐽[𝑖𝑖−1] 

𝑧𝑧𝑢𝑢
[𝑖𝑖] ≔ � 𝑞𝑞𝑘𝑘𝑐𝑐𝑘𝑘𝑘𝑘

[𝑖𝑖]
|Ω|

𝑘𝑘∈𝐽𝐽[𝑖𝑖−1]∖{𝑢𝑢}

;𝑢𝑢 ∈ 𝐽𝐽[𝑖𝑖−1] 

𝑢𝑢𝑖𝑖 ∈ arg min
𝑢𝑢∈𝐽𝐽[𝑖𝑖−1]

𝑧𝑧𝑢𝑢
[𝑖𝑖] , 𝐽𝐽[𝑖𝑖] ≔ 𝐽𝐽[𝑖𝑖−1] ∖ {𝑢𝑢𝑖𝑖} 

Step n+1: Optimal redistribution by (32). 
 

The FFS algorithm selects, in a recursive way, the scenarios that will be not deleted. The closest scenario to the others 
considering the distance 𝑐𝑐 is selected in the first step as the scenario to preserve. In the following steps, new scenarios 
to conserved are selected. The condition is the minimization of the distance between the selected scenarios and 
eliminated ones. 

5. Results 
The aim of this section is to report on numerical experience on testing the mathematical models and the algorithm 
described in section 4. We consider a mobile donation system consisting of a set of 16 nodes with 14 potential donation 
sites. The coordinates and blood collection potential 𝑝𝑝𝑖𝑖  associated with each node 𝑖𝑖 ∈ 𝑉𝑉 are obtained from instances 
proposed by Chao et al. [29]. The Euclidean distance is used to calculate the distance 𝑐𝑐𝑖𝑖𝑖𝑖  of each arc (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴. It is 
assumed that the Blood Center has a fleet of six identical bloodmobiles and a fleet of two identical shuttles. The 
capacity of bloodmobiles and shuttles is 23 and 68 blood units respectively. The planning horizon defined is 3 periods 
to face the demand of 2 days. The wastage and shortage costs generated are $10 and $1000 to guarantee that shortage 
is a more undesirable situation than wastage.  

MATLAB R2015a was used to generate the set of scenarios and to implement the algorithm 1. The deterministic 
model and the two-stage stochastic programming model have been implemented using IBM ILOG CPLEX 
Optimization Studio, version 12.7.1. Computational experiments have been carried out on a computer with processor 
Intel(R) Core(TM) i5 – 7200U CPU, 2.5GHz and 8GB RAM memory. 
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We propose two realizations for the profits of potential donation sites. These profits are assumed to follow a Poisson 
distribution and independent of each other. With these two realizations for the 14 sites, |Ω| = 214 = 16,384 
scenarios. For the scenario set reduction, let us consider the Euclidean norm as a distance measure between two finite 
scenarios 𝜔𝜔𝑠𝑠 = (𝜉𝜉1𝑠𝑠, … , 𝜉𝜉𝐽𝐽𝑠𝑠) and 𝜔𝜔𝑡𝑡 = (𝜉𝜉1𝑡𝑡 , … , 𝜉𝜉𝐽𝐽𝑡𝑡), i.e., 

𝑐𝑐(𝜔𝜔𝑠𝑠,𝜔𝜔𝑡𝑡) = ‖𝜉𝜉𝑖𝑖𝑠𝑠 − 𝜉𝜉𝑖𝑖𝑡𝑡‖2 = �(𝜉𝜉1𝑠𝑠 − 𝜉𝜉1𝑡𝑡)2 + (𝜉𝜉2𝑠𝑠 − 𝜉𝜉2𝑡𝑡)2 + … + �𝜉𝜉𝐽𝐽𝑠𝑠 − 𝜉𝜉𝐽𝐽𝑡𝑡�
2
 

Where 𝜔𝜔𝑠𝑠,𝜔𝜔𝑡𝑡 ∈ Ω. 

The number of scenarios to preserve 𝑛𝑛 is determined empirically as 𝑛𝑛 = 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 150,
200, where 𝑛𝑛 ≪ 4,096. With this last consideration, it is justified the implementation of FFS algorithm instead of 
SBR exposed in the previous section.  

Figures 1 and 2 present the results for the different size of preserved scenario subset in terms of CPU time and objective 
value respectively. Table 1 summarizes the details on performance for the deterministic programming model, the two-
stage stochastic programming model and the FFS algorithm.  

 

Figure 1. CPU times according to 𝑛𝑛. 
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Figure 2. Value of the objective function according to 𝑛𝑛. 

Table 1. Performance of models and FFS algorithm. 

𝒏𝒏 Problem features Value 𝒏𝒏 Problem features Value 

1 

Objective function ($) 20,346 

10 

Objective function ($) 34,456.43 
CPU time (s) for generation - CPU time (s) for generation 1.95 

CPU time (s) for FFS - CPU time (s) for FFS 1,080.82 
CPU time (s) for MILP 21.13 CPU time (s) for MILP 54.09 

Total CPU time (s)  Total CPU time (s) 1,136.86 

15 

Objective function ($) 37,993.61 

20 

Objective function ($) 35,129.57 
CPU time (s) for generation 2.32 CPU time (s) for generation 1.79 

CPU time (s) for FFS 1,205.94 CPU time (s) for FFS 1,476.09 
CPU time (s) for MILP 86.02 CPU time (s) for MILP 44.27 

Total CPU time (s) 1,294.28 Total CPU time (s) 1,522.15 

25 

Objective function ($) 37,447.51 

30 

Objective function ($) 42,756.52 
CPU time (s) for generation 1.09 CPU time (s) for generation 1.13 

CPU time (s) for FFS 1,074.6 CPU time (s) for FFS 2,002.54 
CPU time (s) for MILP 64.59 CPU time (s) for MILP 93.38 

Total CPU time (s) 1,140.28 Total CPU time (s) 2,097.05 

35 

Objective function ($) 43,515.42 

40 

Objective function ($) 41,474.22 
CPU time (s) for generation 2.57 CPU time (s) for generation 1.23 

CPU time (s) for FFS 2,717.54 CPU time (s) for FFS 2,666.06 
CPU time (s) for MILP 67.73 CPU time (s) for MILP 111.03 

Total CPU time (s) 2,787.84 Total CPU time (s) 2,778.32 

45 

Objective function ($) 43,930.97 

50 

Objective function ($) 45,189.26 
CPU time (s) for generation 1.16 CPU time (s) for generation 1.21 

CPU time (s) for FFS 3,231.88 CPU time (s) for FFS 4,944.71 
CPU time (s) for MILP 210.69 CPU time (s) for MILP 198.67 

Total CPU time (s) 3,443.73 Total CPU time (s) 5,144.59 

100 

Objective function ($) 53,277.27 

150 

Objective function ($) 58,812,72 
CPU time (s) for generation 1.15 CPU time (s) for generation 1.16 

CPU time (s) for FFS 6,214.70 CPU time (s) for FFS 9,349.44 
CPU time (s) for MILP 303.69 CPU time (s) for MILP 1,230.69 

Total CPU time (s) 6,519.54 Total CPU time (s) 10,581.29 

200 

Objective function ($) 65,964.05    
CPU time (s) for generation 1.47    

CPU time (s) for FFS 14,784.98    
CPU time (s) for MILP 779.31    

Total CPU time (s) 15,565.76    
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6. Conclusions 
This paper presents a study to optimize the decisions in the mobile collection system of blood products with two types 
of vehicles: bloodmobiles and shuttles. The challenge of optimizing process in the Blood Supply Chain and its vital 
importance have motivated us to start this research. This paper adapts the Vehicle Routing Problem with Profits with 
the objective of minimizing the total routing, wastage and shortage costs. Each collection site has a random blood 
collection potential following a Poisson distribution function that is modeled as a stochastic profit collected by a 
vehicle when it visits a site. A Two-Stage Stochastic Model with recourse is developed to represent the problem using 
a scenario-based approach. The fast-forward selection algorithm is implemented to reduce the set of scenarios.   
 
One of the challenges of stochastic programming is the size of the problems and the solution of these in reasonable 
computational times. For future research related to the mobile collection system of blood products modeled as a two-
stage problem, it is proposed to evaluate scenarios reduction methods to obtain shorter solution times. In addition to 
this, approximation methods can be used for stochastic models such as the L-Shape Method or Cutting Plane 
Approximation. Heuristics, Markov processes or other solution methods can be developed to optimize the blood 
supply chain proposed in this study.  

Possible extensions of the model proposed are to consider that the bloodmobile can be parked more than one day in a 
potential site depending on the profit of the site. It can also be considered that the shuttle makes more visits during the 
day to the bloodmobiles in operation to analyze how this activity affects the average age of blood products in the 
supply chain. 
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