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Abstract 
 

This paper discusses the Value-at-Risk Contribution under the asset liability model using the EWMA 
approach. It is assumed that asset returns and liabilities are time series data following the Exponential 
Weighted Moving Average (EWMA) model. Return of surplus which is the difference between asset 
return and liability is analyzed using asset liability model. In this case the risk of surplus return is 
measured using the Value-at-Risk model. When investments are made on multiple assets, each asset will 
contribute to the establishment of Value-at-Risk from the investment portfolio, which can be measured 
using the Value-at-Risk Contribution model. Using Value-at-Risk Contribution, it can be seen how much 
Value-at-Risk surplus investment portfolio, and what is the proportion of Value-at-Risk contribution of 
each surplus of investment asset. Based on the calculation of Value-at-Risk Contribution, can be 
considered for investors in investing in some assets analyzed. 
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1. Introduction 
Financial risk management aims to balance between risk and profit in accordance with established policies. These 
policies range from the limits of dynamic tactical decisions to strategic decisions in allocating capital to invest 
(Sukono et al., 2016). In investing, investors are generally well aware that there is a potential risk of loss that needs 
to be measured and carefully considered (Dowd, 2002). Usually risk is measured by using variance or standard 
deviation, but variance or standard deviation is an average risk measure. So it can not accommodate all the risk 
events that occur (Sukono et al., 2017.b). Then comes the idea of risk measurement using quantitative, better known 
as Value-at-Risk (VaR) (Khindanova & Rachev, 2005). VaR has become popular and has been widely used for risk 
measurement, by financial institutions for internal importance in decision making (Bohdalova, 2013). 

In making investment decisions, to minimize the risk of loss is usually done by portfolio setting. Portfolio 
formation is done by diversifying investments that is spreading investment in several assets with the aim to reduce 
risk (Sukono et al., 2017.a). Then there is the problem of how to measure the risk contribution of each investment 
asset to the overall risk of its investment. Haaf & Tasche (2002) and Huang et al. (2007), has conducted a study on 
how to measure marginal risk contribution to total portfolio risk. The study shows that Value-at-Risk Contribution 
(VaRC) risk measures can be used to measure the total risk contribution of individual assets to Value-at-Risk. Thus 
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VaRC can be used to show VaR contribution for different risk factors, as well as to calculate risk on some 
investment sub-portfolios (Sukono et al., 2018.a). 

A financial institution that collects funds from the public, usually collected funds are partly used to invest in an 
asset in order to obtain a surplus. Because funds are collected from the community, the financial institution has 
obligations to be paid back to the community. So the surplus obtained by financial institutions must be paid partly to 
the public. Gersner et al. (2007), analyzed the investment assets with the obligations of financial institutions using 
asset-liability models. In the asset-liability model that the surplus return is the difference between the return of the 
investment asset and the return factor liability. The return data of investment assets and liability returns are often 
time series data. To estimate VaR time series data, Gabrielsen et al. (2012) do so using the RiskMetric model. In 
assessing VaR by using the RiskMetric model, what needs to be known is volatility? Volatility can be determined by 
using the normal distribution and exponential weighted moving average (EWMA). 

Referring to Haaf & Tasche (2002), Huang et al. (2007), Gersner et al. (2007), and Gabrielsen et al. (2012), in 
this paper the VaRC analysis is undertaken under the asset-liability model using the EWMA approach. This analysis 
is conducted with the aim to find alternative method of VaRC measurement, for data return following model asset 
liability, where return of investment asset and return of liability is time series data. 
 

2. Mathematical Models 
 

2.1 Calculation of Stock Return 
Let's say tP  price or value of an asset-liability at a time t  ( Tt ,...,1  and T  number of observation data), and tr  

return asset-liability at time t . The amount of asset-liability return can be determined by the equation (Sukono et al., 
2018.b): 

1lnln  ttt PPr  .                                                                       (1) 

Return data tr  hereinafter used in RiskMetric modeling as follows. 

 

2.2 Normality Test of Return Data  
Normality test here is done by Kolmogorov-Smirnov (KS) approach, which is the most basic and most used 
statistical test. The first KS test was introduced by Andrey Nikolaevich Kolmogorov in 1933 and then tabulated by 
Nikolai Vasilyevich Smirnov in 1948. According to Arnold & Emerson (2011), the KS test is used for one-sample 
test allows the comparison of a frequency distribution with some standard distribution, such as the normal Gaussian 
distribution. 

The KS test measures the proximity of the intermediate distance ) with when n assumed to be of 
enormous value, Arnold & Emerson (2011) defines its cumulative distribution function or cdf (cumulative 
distribution function) as follows: 

                                                     (2) 
where  is the supremum of some distance D. 
 Statistic value of D (Most Extreme Differences) in the KS test consists of: 
1) D Positive ( D+ = supx [Fn(x) – F(x)] ) , is a reduction that produces the greatest positive number. 
2) D Negative ( D– = supx [F(x) – Fn(x)] ) , is a reduction that produces the largest negative number.  
3) D Absolute ( D = max {D

+, D–} ), is the largest number between absolute values D+ and D–. 
 Kolmogorov-Smirnov Z is the result of the square root of the number of N samples and the largest absolute 
difference between the empirical cdf and the theoretical CDF of Arnold & Emerson (2011), is almost equal to the 
square root of the N number of samples multiplied by D Absolute: 

AbsoluteDNZ  .                                                                       (3) 

 According to Arnold & Emerson (2011), "Kolmogorov-Smirnov Z" is the Absolute D turned into a 
standardized score (Z score); the standardized score is the Z value in the standard normal distribution. That is, the 
way the test is almost the same as testing the D value, only this time under the normal distribution using the help of 

standard normal distribution table, where: 0H  rejected if Z -count (Kolmogorov-Semirnov) greater than Z -table at 

the level of significance  .   
The basic concept of the Kolmogorov-Smirnov normality test (KS) is by comparing the distribution of data (to be 
tested for normality) to the normal standard distribution. The standard normal distribution is data that has been 
transformed into Z-Score and assumed to be normal. So in fact the KS test is a different test between the tested data 
normality with normal raw data (Arnold & Emerson, 2011). 
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 The hypothesis in the Kolmogorov-Smirnov One Sample test is as follows: 

0H : There is no difference between the data tested and the normal distribution. 

1H : There is a difference between the data tested and the normal distribution. 

If ValueP  >  , then 0H  received, and if ValueP  < , then 0H  rejected. ValueP   is the probability of 

statistic KS and   level of significance. 
 

2.3 Model RiskMetric 
Model RiskMetric dikenalkan oleh J.P Morgan pada tahun 1994, model RiskMetric dipergunakan untuk menghitung 
VaR, dan telah menjadi tolak ukur dalam menghitung risiko pasar. RiskMetric mengasumsikan bahwa log return 
(continously compounded) harian mengikuti distribusi normal dengan mean nol dan variansi diestimasi 
menggunakan  Exponential Weighted Moving Average (EWMA) (Qian, 2005; Haaf & Tasche, 2002).  
 RiskMetric mengasumsikan bahwa return mengikuti: 

     ),0(~| 2
tttt Nrr  ,                                                                    (4) 

And the variance follows recursive EWMA or non-recursive EWMA. Using recursive EWMA when data is used 
very much, the equations used are: 

2 2 2
1 1(1 )

t t t
r      .                                              (5) 

Using non-recursive EWMA when the amount of data used is small, the equations used are: 







 
1

212 )()1(

i

itx
i

t rR ,                                                        (6) 

with xR  is the average value of asset-liability returns (Tsay, 2005). 

Where the values can be used 94.0  for daily data, and 97.0 for monthly data. Using the RiskMetric model, 
the 1-day VaR on t day is calculated by the equation:  

VaR = ttPz  .                                                  (7) 

Where t = standard deviation, sign (-) is intended as a loss, and 
tP  = asset prices (assets-liabilities). When   

assumed to be 1%, then the percentile of the normal distribution is -2.33, so the daily VaR formula is: 

VaR= )33.2( ttP = ttP33.2 . 

For daily portfolio VaR calculations use the same formula with a single asset return. To calculate k-day VaR horison 
is: 

VaR(k)= k xVaR.                                     (8) 

 Where k is used to denote the time horizon (Dowd, 2002). 
 

2.4 Model EWMA 
The Exponential Weighted Moving Average (EWMA) model is used to estimate the volatility in RiskMetric. 
Volatility is a measure of dispersion which in statistics is measured by variance 2 or standard deviation . 

Estimating volatility until the unit of daily time is calculated using 94.0  and using the return squared 2
r . If 

estimating variance with RiskMetric using time series 2
r  for n-periods, then the recursive EWMA variance is 

defined as (Dowd, 2002; Tsay, 2005): 
2 2 2 2 1 2

2 1 2 3
2 1

...

1 ...

n

t t t t n
t n

r r r r  
  


   



   


   
.                                                    (9) 

Because (9) converges to 1

1 
 for n , then 2 2 2

1 1(1 )t t tr      .  

 This can be proven as follows: 
2 2 2 2 1 2

2 1 2 3
2 1

2 2 2 2 2 1 2
1 2 3 2 1

...

1 ...

1
... .( )
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n
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t n
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   




    

   

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    
   

 

It is an infinite geometry series, so the number of series can be calculated using the formula: 
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1

1
nS

r



, for n .                                                      (10) 

Series 
2 1

1
( )
1 ... n      

, for n  can be calculated by the formula (10), where r   

So the number of series is
2 1

1 1
( )

11 ...
1

n  


 
   



. The variances in EWMA can be written as: 

2 2 2 2
2 1 2 3( ...)

1

(1 )

t t t
t

r r r 


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2 2 2 2 2
1 2 3(1 )( ...)

t t t t
r r r          .                                     (11) 

From equation (11) it can be simplified to be: 
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Thus the recursive EWMA variance formula is:  
2 2 2

1 1(1 )
t t t

r      ,                                                                     (12) 

and nonrekursive EWMA, the equation is: 







 
1

212 )()1(

i

itx
i

t rR                                                                 (13)  

Where 
xR  is the average value of return on assets, with 94.0  for daily data and 97.0  for monthly data 

(Dowd, 2002; Tsay, 2005). 
 

2.5 Asset-Liability Model 
The model of surplus return on assets is described briefly as follows. Let's say tiA .  asset i  ( Ni,..., ) at time t , 

tiL .  liability asset i  at the time t , and tiS .  surplus asset i  at the time t . At the beginning t =0, the initial 

surplus is given by: 

0.0.0. iii LAS  . 

The surplus obtained after one period is (Gersner et al., 2007): 
]1[]1[

1.1. 0.0.1.1.1. ii LiAiiii rLrALAS  , 

Let's say 
iSr  return surplus expressed as: 

i
ii

i L
i

A
i

Li

i

Ai

i

ii
S r

f
r

A

rL

A

rA

A

SS
r

0.0.

0.

0.

0.

0.

0.1. 1
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
 ,                                       (14) 

with 
0.

0.
0.

i

i
i

A

L
f   (Gersner et al., 2007). 

 Based on equation (14) the average of the surplus return can be determined by the formula: 

iiii L
i

ASS
f

rE 
0.

1
][  .                                                   (15) 
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Where 
iS , 

iA  and 
iL  respectively is the average of surplus returns, assets, and liabilities. Also, according to 

(14), the surplus variance can be determined by the formula: 

2
2
0.0.

22 12

iiiii L
i

LA
i

AS
ff

  .                                                (16) 

Where 2

iS
 , 

2

iA
  and 2

iL
  respectively variance of surplus returns, assets, and liabilities. While 

iiLA  

covariance between asset return and liability return (Gersner et al., 2007). Similarly, by equation (14), the 
covariance between surpluses can be determined by the formula: 

jijijiji LL

ji

LA
ji

AASS
ffff


0.0.0.0.

1
)

11
(  .                                (17) 

Where 
ji AA  covariance between assets i  with assets j , 

jiLA  covariance between assets i  with liability j , 

and 
jiLL  covariance between liabilities i  with liability j . Using covariance between surplus return and its 

variance, correlation between surplus return can be determined as: 

ji

ji

ji
SS

SS

SS 


  .                                                          (18) 

 

2.6 VaR Contribution Model 

To make it easy to understand, let's say a portfolio p consists of two assets that is a and b, with each proportion 1d  

and 2d . The variance of the portfolio value will be equivalent to the amount of variance of the two assets and the 

covariance between them: 

   22
221

22
1

2 2
bbaabap dddd   .                                                   (19) 

This equation can be rewritten into a number of multiplication factors with a  and b  as follows: 

 )()( 21
2
121

2
1

2
aabbbbabaap dddddd   ,                                  (20) 

with ab  the correlation coefficient between the two assets. If both sides are divided by the standard deviation of 

the portfolio, a standard deviation sum equation is obtained: 

 












 






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
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



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 21

2
221

2
1 .                                (21) 

The tribes in large brackets represent the correlation between the risks of the portfolio. In the form of a normal 
distribution approach, ( )VaR   is z  times standard deviation: 

 pp zVaR 


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21
2
221

2
1 .                   (22) 

Where 1( )z   tail left from the standard normal distribution. So as to be defined the VaR contribution for two 

risks a and b, can be summed to total VaR (Marrison, 2002): 


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So that 

bap VaRCVaRCVaR  .                                                            (23) 

 Equation (19) can also be expressed in the following form: 
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       22222112.1
2

11
2 2  ddddp  .                                                  (24) 

So the equation is obtained 1VaRC  and 2VaRC  such as the following: 

  1 1 1.2 2 2

1 1 1

p

d d
VaRC z d

  





   and  2 2 1.2 1 1

2 2 2

p

d d
VaRC z d

  





  .               (25) 

If it consists of more than two assets, can use the same process of grouping tribes to obtain VaRC as follows 
(Marrison, 2002): 

 1 1 1.2 2 2 1.
1 1 1

...

p

d d d
VaRC z d
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

  
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   
 

.                                        (26) 

 .1 1 1 .2 2 2 ...
N N N N

N N N
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d d d
VaRC z d

    


   
   

 
.                                  (27) 

 If there are many risk factors (assets), then VaR can be explained as follows (Marrison, 2002): 

   iijj
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i

N

j
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 


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2                                                                 (28) 

Equation (28) can be grouped again and then divided by p , and obtained the following equation: 

 
p
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j jjjiN

i

iip

d
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





 
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1

                                                          (29) 

For each i, a tribe describing VaR's contribution to factor i: 

 .1

N

i j j jj

i i i

p

d
VaRC z d

 



  

                                                   (30) 

The mathematical models described above will be used for the analysis of the following illustrative data. 
 

3. Numerical Illustration 
 

3.1 Illustration Data 

The illustration data used is generated through the simulation of four asset values, say for example 1A , 2A , 3A  and 

4A . Similarly, liability value data are also obtained by generated through simulations, and named for example 1L , 

2L , 3L  and 4L . Asset value and liabilities data are generated respectively 500. The asset value and liability data 

are then determined by using each equation (1). Furthermore, asset and liability return data are tested for normality 
as follows. 
 

3.2 Normality Testing of Return Data  
Normality tests are conducted with the intention of ensuring that the return on assets and liabilities is normally 

distributed with 0 and variance 2
t , as required by RiskMetric and EWMA analysis. The normality test here is done 

by the Kolmogorov-Smirnov (KS) method, referring to equations (2) and (3) in section 2.2. Test results are given in 
Table-1 below. 
 

Table-1. Results of the Normality Test of Return Data 
. 

 If determined level of significance  = 0.05, then the P-Value in Table-1 appears, all greater than 0.05. 

Asset Distribution Mean P-Value  Liability Distribution Mean P-Value 

1A  Normal 0.0000 0.09713  1L  Normal 0.0004 0.05985 

2A  Normal 0.0002 0.06621  2L  Normal 0.0001 0.07445 

3A  Normal 0.0001 0.07045  3L  Normal 0.0000 0.09463 

4A  Normal 0.0001 0.09234  4L  Normal 0.0003 0.07856 
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Therefore, the hypothesis that the return of normal distributed for assets and liabilities are correct. Next, we estimate 
the volatility of asset return data and liabilities using the EWMA method as follows. 
 

3.3 Volatility Estimates Using EWMA 
In this section volatility estimates are made for each asset return and liability. Estimates were performed using the 
EWMA method with the help of MS Excel 2007 software. Since the number of data returns of each asset and 
liability is relatively small ie 500, the estimation is done by using non recursive EWMA method referring to 
equation (13). The estimation results are given in Table-2 below. 
 

Table-2. Results of Volatility Estimates 
 
 
 
 
 
 
 
The estimated value of the asset and liability volatility in Table-2 will then be used to estimate the volatility of 
surplus returns as follows. 
 

3.4 Estimation of Variance and Correlation of Surplus Return  
For estimated volatility the surplus return requires the asset return volatility and liability return values of Table-2, as 
well as the covariance value between the asset return and the corresponding return on the liabilities. Therefore, it is 
necessary to estimate the covariance between asset returns and return liabilities, and the results are given in Table-3 
column 

iiLA . Further, for the estimation of volatility the surplus return is made by referring to equation (16). If 

assumed 10. if  ( 4,...,1i ), the result of the estimated volatility of surplus return is given in Table-3 as follows. 

 
Table-3. Estimated Results of Volatility the Surplus Return  

 
  
 
 
 
 
 
 
While for estimation of correlation between surpluses return is done by using equation (18). Also assuming that 

10. if  ( 4,...,1i ), the result of the correlation estimation of surplus return is given in Table-4 as follows. 

 
Table-4. Correlation Between Surplus Return  

Surplus 1S  2S  3S  4S  

1S  1 0.61424 0.65933 0.78452 

2S   1 0.59871 0.63411 

3S    1 0.58583 

4S     1 

 
 The values of the volatility estimator in Table-3 and the correlation estimator between surplus returns in Table-
4 will then be used to estimate VaR and VaRC as follows. 
 

3.5 Estimates of VaR and VaRC 
The estimated magnitude of VaRC involves the volatility value in Table-3 and the correlation value between the 

surplus returns in Table-4. But before the first need to estimate portfolio variance 2
p . Estimation of portfolio 

Asset Volatility  Liability Volatility 

1A  0.00311  1L  0.00232 

2A  0.00247  2L  0.00423 

3A  0.00256  3L  0.00321 

4A  0.00412  4L  0.00332 

     

Surplus ii LA  2

is
  

is
  

1S  0.00112 0.00431 0.06565 

2S  0.00223 0.00447 0.06686 

3S  0.00121 0.00456 0.06753 

4S  0.00231 0.00513 0.07162 
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variance is done by referring to equation (28). If you have a portfolio that produces four kinds of surplus returns, 

each with a proportion 1d = 0.20; 2d = 0.20; 3d = 0.25 and 4d = 0.35, then the result of estimation of variance and 

standard deviation of portfolio are: 
2
p = 0.027920 and p = 0.167094. 

 Furthermore, the estimation is magnitude iVaRC  ( 4,...,1i ) is performed by referring to (30). If set the level of 

significance  =0.05, then the standard normal distribution percentile is obtained 645.105.0 z . So the result of 

estimation iVaRC  ( 4,...,1i ) respectively are: 

1VaRC = 0.006740; 2VaRC = 0.006245; 3VaRC = 0.008016 and 4VaRC = 0.013262. 

So obtained pVaR = 0.034263. 

 Based on values of iVaRC  ( 4,...,1i ) and pVaR , it can be explained, that the first asset return and liability 

contribute a risk of 0.006740; second by 0.006245; third by 0.008016; and fourth by 0.013262 against total risk 

pVaR  amount 0.034263. Thus, the values of risk contribution can be used as consideration for investors in 

investing in assets and liabilities analyzed. 
 

4. Conclusion 
This paper has analyzed the Value-at-Risk Contribution under the asset liability model using the EWMA approach. 
Asset price data and liabilities analyzed are generated by simulation techniques, each of 500. The results obtained 

that the analysis 1VaRC = 0.006740; 2VaRC = 0.006245; 3VaRC = 0.008016 and 4VaRC = 0.013262, pVaR = 

0.034263. These values are certainly very useful for investors in investing in assets and liabilities that are analyzed. 
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