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Abstract 
 

In this paper, a numerical analysis of mathematical model, in the form of a system of ordinary differential 

equations (ODEs) was carried out. The mathematical model describes the effect of tumor infiltrating 

lymphocytes (TIL) and interleukin-2 (IL-2) on the dynamics of tumor cells. It characterizes the ordinary 

differential equations system dynamics by determining stability properties. The system characteristic is 

useful to gain a broad understanding of the specific system dynamics and to help guide the development 

of tumor therapy.  
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1. Introduction 
A tumor is an abnormal growth of body tissue. It begins to form when a single cell mutates in such a way that lead 

to uncontrolled growth (Chang et al., 2003). Tumors can be cancerous (malignant) or noncancerous (benign). In 
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general, tumors occur when cells divide excessively in the body. Typically, cell division is strictly controlled. New 

cells are created to replace older ones or to perform new function. Cells those are damaged or no longer to make 

room for healthy replacements (Moscow and Cowan, 2007). Problems with the immune system can lead to tumor. 

Tobacco cause more death from cancer than any other environmental substance (Moscow and Cowan, 2007). The 

Cancer Research Institute reports that in 1995, an estimated 1.252 million cases were diagnosed, with 547 000 

deaths in the United States alone. The relative survival rate had been increasing to 54 % with new techniques for 

detection and treatment of cancer (Chang et al., 2003). According to the International Agency for Research on 

Cancer, about 715 000 new cancer cases and 542 000 cancer deaths occurred in Africa (Rebbeck, 2011). These 

numbers were projected to nearly double (1.28 million new cancer cases and 970 000 cancer deaths) by 2030 simply 

due to the aging and growth of the population, with the potential to be even higher because of the adoption of 

behavior and lifestyles associated with economic development, such as smoking, unhealthy diet and physical 

inactivity (Rebbeck, 2011). 

In order to model the effect of any therapy on tumor growth alone, one should first model kinetics of growth of 

an untreated tumor. Most often the growth of untreated tumor is well described by the Gompertz function (Chignola 

et al., 2000; Miller et al., 2001; Isaeva and Osipov, 2009) and Logistic function (de Pillis and Radunskaya, 2001; de 

Pillis et al., 2006), yet for some tumor the more general Bertalanffy-Richards (Generalized Logistic) model is 

required to describe data adequately (Spratt et al., 1993; Kartono and Subiyanto, 2012; Mamat et al., 2012; Mamat et 

al., 2013; Subiyanto et al., 2013).  

In this paper, it presents numerical analysis of mathematical model of tumor therapy. The model is a system of 

ordinary differential equations whose state variables are populations of tumor cells, specific and nonspecific immune 

cells, and concentrations of therapeutic interventions. The goal of this paper is to search the parameter whose alter 

the stability of the equilibrium point.  

 

2. Mathematical Model 
In this section, a mathematical model in the absence of therapy will be considered. The model described interaction 

between tumor cells and immune cells without any treatment. The mathematical model is a system of ordinary 

differential equations (ODEs) whose state variables are populations of tumor cells based on previous work (Kartono 

and Subiyanto, 2012; Mamat et al., 2012; Mamat et al., 2013; Subiyanto et al., 2013). The couple system of equation 

built up from the specific terms for each cell growth and death as well as interaction terms, are listed below. The 

expression for D is one that appear in several locations, and so is listed separately below: 

1
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where: 

 tT , tumor cell population at time t 

 tN , total NK cell effectiveness at time t 

 tL , total CD8+ T cell effectiveness at time t 

 tC , number of circulating lymphocytes (or white blood cells) at time t 
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Table 1: Parameters of the mathematical model in the equation 1-5  

Parameter Units Description Source 

a = 4.31 x 10
-1

 day
-1 

Tumor growth rate (Diefenbach et al., 2006) 

b =1.02 x 10
-9

 cell
-1 

1/b is tumor carrying capacity (Diefenbach et al., 2006) 

c = 6.41 x 10
-11

 day
-1

 ·  cell
-1 

Fractional (non) ligand transduced 

tumor cell kill by NK cells 

(Diefenbach et al., 2006), 

(Dudley et al., 2002) 

d = 2.34 day
-1 

Saturation level of fractional tumor 

cell kill by CD8+ T Cells. Primed 

with ligand-transduced cells, 

challenged with ligand-transduced 

(Dudley et al., 2002) 

e = 2.08 x 10
-7

 day
-1 

Fraction of circulating lymphocytes 

that became NK cells 

(Kuznetsov et al., 1994) 

l = 2.09 dimensionless Exponent of fractional tumor cell 

kill by CD8+ T cells. Fractional 

tumor cell kill by chemotherapy 

(Dudley et al., 2002) 

f = 4.12 x 10
-2

 day
-1 

Date rate of NK cells (Diefenbach et al., 2006) 

g = 1.25 x 10
-2

 day
-1 

Maximum NK cells recruitment by 

ligand-transduced tumor cells   

(Kuznetsov et al., 1994) 

h = 2.02 x 10
7
 cell

2 
Steepness coefficient of the NK cell 

recruitment curve 

(Kuznetsov et al., 1994) 

j = 2.49 x 10
-2

 day
-1 

Maximum CD8+ T cell recruitment 

rate. Primed with ligand-

transduced cells 

(Diefenbach et al., 2006), 

(Dudley et al., 2002) 

k = 3.66 x 10
7
 cell

2 
Steepness coefficient of the CD8+ T 

cell recruitment curve  

(Diefenbach et al., 2006), 

(Dudley et al., 2002) 

m = 2.04 x 10
-1

 day
-1 

Death rate of CD8+ T cells (Yates and Callard, 2002) 

q = 1.42 x 10
-6

 day
-1 

·  cell
-1 

CD8+ T cell inactivation rate by 

tumor cells 

(Kuznetsov et al., 1994) 

p = 3.42 x 10
-6

 day
-1 

·  cell
-1 

NK cell inactivation rate by tumor 

cells 

(Dudley et al., 2002) 

s = 8.39 x 10
-2

 dimensionless Steepness coefficient of tumor –
(CD8+ T cell) lysis term D. Primed 

with ligand-transduced cells, 

challenged with ligand-transduced. 

(Diefenbach et al., 2006) 

r1 = 1.10 x 10
-7

 day
-1 

 ·  cell
-1 

Rate of which CD8+ T cells are 

stimulated to be produced as a 

result a tumor cells killed by NK 

cells 

(Yates and Callard, 2002) 

r2 = 6.50 x 10
-11

 cell
−1

 ·  day
−1 

 

Rate of which CD8+ T cells are 

stimulated to be produced as a 

result a tumor cells interaction with 

circulating lymphocytes 

- 

u = 3.00 x 10
-10

 cell
−2

 ·  day
−1 

Regulatory function by NK cells of 

CD8+ T cells 

- 

 = 7.50 x 10
8
 cell · day−1 Constant source of circulating 

lymphocytes 

(Hauser, 2001) 

 = 1.20 x 10
-2

 day
−1 

 

Natural death and differentiation of 

circulating lymphocytes 

(Hauser, 2001) 
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3. Result and Discussion  
In order to perform the numerical analysis of the mathematical model, it necessary to obtain accurate parameters. 

System parameters are very sensitive to the choice of parameters. In fact, the parameter sets vary not only for 

specific tumor type but also from one individual to another. Table 1 describes all parameters to perform the 

numerical analysis of the mathematical model. Based on the value of the all parameters in Table 1, the system of 

ordinary differential equations in section 2 was obtained equilibrium points at T = 0, N = 1
f , L = 0 and C = 1

  

when the “tumor-free” equilibrium and possibly several non-zero tumor equilibria. The system of ordinary 

differential equations 1 through 5 is nonlinear. Linearize these system equations to find the eigenvalues of its 

Jacobian is required, in order to analysis the equilibrium stability. So that, it necessary to set equations 1 through 3 

to new form as follows: 
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                              (8) 

 

At equilibrium points at T = 0, N = 1
f , L = 0 and C = 1

  the system of ordinary differential equations 6 

through 8 was obtained the Jacobian matrix as follows:  

1 2
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0
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                                                                  (9) 

The eigenvalues of the system linearized about this equilibrium point are therefore: 

01 







 )m)(f(

f

c 


 

Hence, will be gotten: 

f

c
11 

   ,   f2      and     m3   

Since f, m is positive constants, therefore 2 and 3  
is always negative. Thus, equilibrium point for the system 

equation is stable if and only if  011 
f

c


    fc  . From this, we procure system dimensional is 

stable if and only if   
a

f

aa

ec 


3
   

e

fa
c




 . Unfortunately for our parameter set in Table 1, this inequality is 

not true so that this equilibrium point is an unstable. This inequality indicates that the necessary criteria for stable 

equilibrium point are that the tumor growth rate (a) is low, the death rate of NK-cells (f) is lower, the fractional 
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tumor cell kill by NK-cells (c) is larger, and the production of NK cells 










e  is larger. Based on this result, we 

procure that parameter c have important role for change stability of the system. We obtain bifurcation point for our 

system is 
6106.0 xc  . In Figure 1 shows two simulations. The blue line illustrates the case in which c smaller 

than the bifurcation point, so that our equilibrium point is unstable where a small perturbation from equilibrium 

point will cause the system to move away from that point. In this case, one tumor cell can grow to larger tumor mass 

greater than 
9102x  cells in 250 days. However, as illustrated by green line, if c is larger than the bifurcation point 

value, the system becomes stable and a single tumor cell will die. 
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Figure 1. Simulation illustration system behavior for parameter c 

 

 
4. Conclusion 

The bifurcation point in this model has been analyzed.  Through this analysis we search the parameter whose alter 

the stability of the equilibrium point. We procure that parameter c (the fractional tumor cell kill by NK) cells have 

important role for change stability of the system. We obtain bifurcation point for our system is 
6106.0 xc  . In 

this case which parameter c smaller than the bifurcation point, thereby equilibrium point is unstable where a small 

perturbation from equilibrium point will cause the system to move away from that point. The immune system cannot 

handle a single tumor cell and consequently tumor continued to grow and become aggressive. However, if parameter 

c is larger than the bifurcation point value, the system becomes stable and a single tumor cell will die. 
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