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Abstract 

The development of several ambulance location models have been discussed in the academic literature. 

Most of these models have been further extended to consider more realistic situations into account and the 

use of different assessment criteria. However, there is not an exhaustive literature that takes the existing 

standard models to compare them according to the criteria used in practice. In this work, we undertake the 

task of comparing the performance of several ambulance location models on coverage and response time 

criteria. The results of this work are important to help emergency medical organizations to define their 

most adequate model for defining their ambulance base structure. The comparison of the models is carried 

out in two Mexican emergency operations of the Red Cross located in the cities of Monterrey and 

Tijuana.  
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1 Introduction 
The emergency medical services (EMS) providers are responsible of the pre-hospital care and transportation of the 

patients to a medical center. They are in charge of the first medical contact with the patient since an emergency call 

enters to a call center. The quality of these services, offered either by public or private companies, has a potential 

direct impact on the patient survival, especially when the cause of the call is a life-threatening disease (Rodriguez et 

al, 2016), and it has been of interest for OR researchers in the last four decades. 

There is a vast literature in OR approaches to solve the problems arisen in both strategic and tactical levels of the 

EMS planning process. There are several recent reviews that address them as well as identify new challenges 

(Hadiyul et al, 2018, Rodriguez et al, 2017, Reuter-Oppermann, 2017, Aringhieri et al, 2017 Ahmadi-Javid et al, 

2016, Li et al., 2011). The location of bases for ambulances is one of the strategic decisions of this EMS planning 

process. Only Reuter-Oppermann et al. (2017) refer more than 33 papers dealing with ambulance location problems 

especially in European countries such as UK, Germany and the Netherlands. However, very few studies have been 

found in LA countries (Dibene, 2017 in Mexico; Andrade et al, 2015 in Brazil; Cespedes et al, 2008 in Colombia, 

and Rodriguez et al, 2016, a review). 

One of the most common process’ performance indicator of the ambulance location problem is the response time 

(RT), which is measured since a call enters until the ambulance arrives at the patient’s location. It includes a pre-trip 

delay for triage and dispatch, and the ambulance travel time. RT is one of the five key indicators defined to monitor 

and evaluate the pre-hospital emergency care by the European Emergency Data Project (Reuter-Oppermann, 2017). 

In Tijuana, Mexico, for example, the average response time was reported to be 14 min with a standard deviation of 7 

min (Dibene et al., 2017); nevertheless the National Fire Protection Association’s recommendation is to attend a call 
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within 8 minutes, so that there is still room for researchers to improve this situation. The Average Response Time 

model (ARTM), which is equivalent to a p-median model, has shown to outperform others in terms of response time 

(van den Berg, 2016).   

 

There are other process indicators that are used in the objective function such as preparedness level, vehicle 

utilization, staff utilization or balance, late response, lost calls, etc. (Rodríguez et al, 2016). Among the outcome 

quality indicators used in OR approaches is the survival rate, however a general patient’s health status to include all 

patients and not only the critical ones should be preferred.   

 

Another way to evaluate the performance of EMS services is from the covering perspective. In this case, a standard 

or goal is defined in terms of the amount of demand that should be covered in a given period. (i.e. the EMS Act of 

1973 says that in urban areas 95% of requests should be reached within 10 min (Li et al, 2011)). Covering location 

problems have been addressed since the 70’s, either guaranteeing a total covering or maximizing it. However, while 

a call is being attended, other demand points in the same call’s area are left unattended. This has motivated 

additional coverage approaches.  The double standard model (DSM), proposed by Gendreau et al (1997) has been 

the pioneer approach in the strand of models providing additional covering.  

 

When uncertainty is taken into account, it is considered in three types of factors: demand, availability of EMS 

vehicles, and response times. Those models that include uncertainty have shown to give better coverage estimates 

(Erkut et al., 2008). In the strand that considers the probability that an ambulance is busy, the Maximum Expected 

Covering Location Problem (MEXCLP) has proven to outperform other related models (van den Berg, 2016). This 

model has also been the basis for multiple extensions, including stochastic programming techniques (Reuter-

Opermann et al, 2017). 

 

In this work, we undertake the task of comparing the performance of three static location models that have shown to 

perform well in European scenarios: the DSM, the ARTM, and the MEXCLP. Unlike the literature found, the 

models compared include some extensions, such as service differentiation and multi-period decisions. In addition, 

the comparison of the models is carried out in two Mexican emergency operations of the Red Cross located in the 

cities of Monterrey and Tijuana, in Mexico.  The rest of the paper is structured as follows: Section 2 describes the 

three models to be compared, using common notation. Section 3 describes the data structure and collection for the 

two cases. Section 4 presents the most interesting results that emerged from the comparison. Finally, some summary 

conclusions are remarked.  

 

2 Ambulance Location Models  
In this section we describe the three models to be compared. These versions extend the originals in the sense that 

they (a) consider different type of services and (b) are multi-period. 

 

2.1 Double Standard Model (DSM) 
The DSM focuses on covering each demand zone twice (e.g. by two ambulances). To do this, it considers two target 

response times 𝑟1 and 𝑟2, 𝑟1 < 𝑟2. While the 𝑟2 target must be covered for all demand zones, the 𝑟1 target must be 

covered by a fraction α of the weighted demand. 

 

Sets: 

𝑖 ∈ 𝐼: demand zones  {1,2,3, ⋯ , 𝐷} 

𝑗 ∈ 𝐽: potential bases {1,2,3, ⋯ , 𝐵}, so 𝑝 is the maximum number of locations to open. 

𝑘 ∈ 𝐾: ambulances {1,2,3, ⋯ , 𝐴}, so 𝐴 is the maximum number of ambulances to be assigned 

𝑠 ∈ 𝑆: service types {1,2,3}, so each service type has its own priority. 

𝑡 ∈ 𝑇: time slots {1,2,3, ⋯ 𝑇} 

 

 

Parameters: 

𝛼: Minimal coverage in 𝑟1 (%) 

𝑊𝑖𝑡𝑠: Weighted demand in point 𝑖, for service type 𝑠, at time 𝑡. 

𝑞𝑗: Maximum number of ambulances at location 𝑖 (e.g. 1 ∀𝑗) 
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𝑎𝑖𝑗
1 =  {

1 if location 𝑗 covers demand point 𝑖 within 𝑟1

0 otherwise                                                                 
 

𝑎𝑖𝑗
2 =  {

1 if location 𝑗 covers demand point 𝑖 within 𝑟2

0 otherwise                                                                 
 

 

Variables:  

𝑦𝑖𝑘𝑡 =  {
1 if demand point 𝑖 is covered 𝑘 times at time interval 𝑡, within 𝑟1   
0 otherwise                                                                                                         

 

𝑥𝑗 =  {
1 if a base is open at location 𝑗    
0 otherwise                                       

 

𝑢𝑗𝑡 = Number of identical ambulances assigned at base j at time t.  

𝑍𝐷𝐶= Weighted double coverage 

 

DSM 

max 𝑍𝐷𝐶 = ∑ ∑ ∑ ( 𝑤𝑖𝑡𝑠 𝑦𝑖2𝑡)𝑡𝑠𝑖   (1)  

Subject to:  

∑ 𝑎𝑖𝑗
2

𝑗 𝑢𝑗𝑡 ≥ 1 ∀ 𝑖, 𝑡  (2)  

∑ ∑ 𝑤𝑖𝑡𝑠𝑦𝑖1𝑡𝑗𝑠 ≥  𝛼 ∑ ∑ 𝑤𝑖𝑡𝑠𝑗𝑠 ∀𝑡  (3)  

𝑦𝑖,k+1,𝑡  ≥  𝑦2𝑖𝑘𝑡  ∀𝑖, 𝑡  (4)  

∑ 𝑎𝑖𝑗
1

𝑗 𝑢𝑗𝑡  ≥  𝑦𝑖1𝑡 + 𝑦𝑖2𝑡  ∀𝑖, 𝑡  (5)  

𝑢𝑗𝑡  ≤  𝑞𝑗  𝑥𝑗 ∀𝑗, 𝑡  (6)  
∑ 𝑢𝑗𝑡𝑗 =  𝐴 ∀𝑡   (7)  

∑ 𝑥𝑗𝑗  ≤  𝑝  (8)  

𝑥𝑗  ∈ {0,1} ∀𝑗;  𝑦𝑖𝑘𝑡  ∈ {0,1} ∀𝑖, 𝑡 𝑢𝑗𝑡 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀𝑗, 𝑡   (9)  

 

The objective function (1) maximizes the weighted demand double coverage. Total coverage by at least one vehicle 

in response time 𝑟2 is given by equation (2). Equation (3) set the partial coverage by at least one vehicle in 𝑟1. 

Equation (4) guarantees the order of ambulances covering a given base every time, while equation (5) establishes the 

double coverage. Equation (6) determines the number of ambulances located at each base, and equations (7) and (8) 

limit the number of ambulances to be located and the number of bases to be opened. Equation (9) establishes the 

domain of the variables. 

 

2.2 Average Response Time Model (ARTM) 
The ARTM looks to minimize the average response time from the nearest base. Although placing more than one 

ambulance does not improve the objective function, the same decision variables and nomenclature are maintained 

for comparison purposes. An additional variable 𝑦𝑖𝑗  is used to identify the nearest base. 

 

Sets: Same sets as DSM. 

 

Additional Parameters: 

𝑡𝑝𝑖𝑗: Response time from location j to point i.  

 

Additional Variables: 

𝑦𝑖𝑗𝑡 = {
1 if the open base 𝑗 is the nearest opened base to demand point 𝑖 at time 𝑡
0 otherwise                                                                                                                       

   

𝑡𝑚𝑖𝑡: Minimum response time to get location j from the nearest base opened at time 𝑡 

𝑍𝑅𝑇: Average response time 

𝑦𝑡
2: Total weighted demand covered within 𝑟1 

𝛼𝑡: % weighted covered demand at time t 

 

ARTM 

min 𝑍𝑅𝑇 = ∑ ∑ ∑ ∑ 𝑤𝑖𝑡𝑠𝑗 𝑡𝑝𝑖𝑗  𝑦𝑖𝑗𝑡 𝑡𝑠𝑖   (10)  

Subject to:  

 ∑ 𝑦𝑖𝑗𝑡𝑗 = 1 ∀𝑖, 𝑡  (11)  

 𝑦𝑖𝑗𝑡 ≤  𝑥𝑗  ∀ 𝑖, 𝑗, 𝑡  (12)  
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 𝑦𝑖𝑗𝑡 ∈ { 0,1 } ∀ 𝑖, 𝑗, 𝑡  (13)  

+ equations (6) to (9)  

 

In addition, the following constraints were used to correlate the other models: 

 

Equations (1),  (4) and  (20)  

∑ 𝑎𝑖𝑗
2

𝑗 𝑢𝑗𝑡 𝐵𝐷⁄ = 𝑦𝑡
2 ∀ 𝑖, 𝑡   (14)  

∑ ∑ 𝑤𝑖𝑡𝑠𝑦𝑖1𝑡𝑗𝑠 = 𝛼𝑡  ∀𝑡  (15)  

𝑡𝑝𝑖𝑗𝑥𝑗  ≥  𝑡𝑝𝑖𝑗𝑦𝑖𝑗𝑡 ∀𝑖, 𝑗, 𝑡  (16)  

𝑡𝑚𝑖𝑡 = ∑ 𝑡𝑝𝑖𝑗𝑦𝑖𝑗𝑡 𝑗 ∀𝑖, 𝑡  (17)  

𝑡𝑚𝑖𝑡 ≥ 0 ∀𝑖, 𝑡;  𝑦𝑡
2 ≥ 0 ∀𝑡   (18)  

 

The objective function (10) minimizes the average response time. Equations (11) and (12) guarantees that every 

demand zone has a nearest opened base covering it. Equations (6) to (9) set the available resources as mentioned 

before. In this model, there is no a total coverage by at least one vehicle in response time 𝑟2, so the coverage is 

computed in (14). Equation (15) computes the partial coverage by at least one vehicle in 𝑟1 at each time. Equations 

(16) and (17) identify the nearest opened base to demand zone i and keeps the corresponding minimum response 

time to that zone in 𝑡𝑚𝑖𝑡.  Equations (13) and (18) establish the domain of the variables. Equation (20) is part of the 

MEXCLP model which will be explained next. 

 

2.3 Maximum Expended Covering Location Problem (MEXCLP) 
This model considers the concept of marginal coverage. Proposed by Daskin (1983), it uses the expected coverage 

where each additional ambulance can offer some coverage to a given region.  To do this, it considers a fixed long-

term probability,  < 1, that an ambulance is busy within the target response 𝑟1 (Kerkkamp. 2014). 

 

Sets: Same sets as above. 

 

Additional Parameters: 

𝜌: Probability that an ambulance is busy (or not available/ not working) within 𝑟1.  

 

Additional Variables: 

𝑍𝑋𝐶: Expected coverage 

 

MEXCLP 

max 𝑍𝑋𝐶 = ∑ ∑ ∑ 𝑤𝑖𝑡𝑠 ∑ 𝜌𝑘−1
𝑘 (1 − 𝜌) 𝑦𝑖𝑘𝑡 𝑡𝑠𝑖   (19)  

Subject to:  

equations (6) to (9)  

∑ 𝑦𝑖𝑘𝑡𝑘 = ∑ 𝑎𝑖𝑗
1

𝑗 𝑢𝑗𝑡 ∀𝑖, 𝑡  (20)  

 

In addition, the following constraints were used to correlate the other models: 

 

Equations (1), (4) , (10), (14), (15), and (19)  

 

The objective function (19) maximizes the expected coverage within  𝑟1 . Equations (6) to (9) set the available 

resources, as expressed before. Equation (20) counts the number of covering locations within 𝑟1, guaranteeing that 

all ambulances covering demand zone i within 𝑟1 are identified.  
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3 The Two Mexican Cases 
 

3.1 Mexican Red Cross in Monterrey 
Monterrey is the capital of the northeastern state of Nuevo Leon, in Mexico. Its metropolitan area is the third-largest 

in Mexico with more than 5,300 km
2
 of area and 4.7 million inhabitants (INEGI, 2015).  To optimize the location of 

ambulances in this city, the model considered the following: 

 

Demand zones: Demand zones were constructed such that they represent significant partitions of the city in discrete 

regions in order to concentrate the EMS calls. The city of Monterrey and its metropolitan area was divided into 

quadrants of approximately 23km
2
, dividing it into 42 equal parts, allowing each incident to be cataloged within a 

quadrant. Each demand zone corresponds to a quadrant. Figure 1 shows the area under study and identifies the 

centroids of each quadrant, which will be referred as demand points.  

 

 
 

Figure 1. Monterrey area under study with demand points. 

 

Potential base locations: Potential bases should provide some basic features, such as an adequate parking space for 

the ambulance, access to electrical outlets for recharging equipment, shade, WC and general security for personnel 

and equipment. The potential base locations considered in this work consist of convenience stores in Monterrey 

identified as potential locations to place ambulances while waiting for calls. We selected a total of 884 possible sites 

of location in the city of Monterrey. The geographic coordinates of these potential bases were obtained from INEGI. 

All possible base locations are shown in Figure 2. 

 

Demand call and priority: To represent the demand, we use from an EMS provider the call history and the 

geographical location of the calls origin. In this case, a total of 14,368 calls that requested EMS provided by Red 

Cross of Monterrey were collected from November 2016 to April 2017. These records contain the GPS location of 

the originator of the call, as well as three priority levels of each call (Siren, Silent Urgency, Make the service brief). 

Figure 3 shows the location of all EMS calls used in our demand model. 

 

Demand scenarios: After analyzing the demand behavior, we selected four scenarios which represent variations in 

demand due to the time of day: morning, afternoon, night, and an overall case. 

 

 
 

50



Proceedings of the International Conference on Industrial Engineering and Operations Management 

Paris, France, July 26-27, 2018 

 

© IEOM Society International 

 
Figure 2. Potential base locations in Monterrey 

 

 

 
Figure 3. Location of calls during the period of study in Monterrey 

 
Average travel time: The travel times used in the models are the average travel time between the potential base 

locations and the demand points, calculated by an average speed using Google Maps and its forecast of average 

transfer times between strategic points in the city. 
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3.2 Tijuana 
Tijuana is the largest city on the Baja California Peninsula, located at the northwestern of Mexico, next to the US 

border. Its metropolitan area has more than 1,390 km
2
 of area and 1.8 million inhabitants (INEGI, 2015).  To 

optimize the location of ambulances in this city, the model considered the following: 

 

Demand zones: The city of Tijuana and its metropolitan area was divided into quadrants of approximately 25km
2
, 

dividing it into 15 equal parts, allowing each incident to be cataloged within a quadrant. Figure 4 shows the area 

under study and identifies the demand points.  

 

 
Figure 4. Tijuana area under study with demand points. 

 

Potential base locations: With the same considerations as for Monterrey, we selected a total of 434 possible 

location sites in the city of Tijuana. The geographic coordinates of these potential bases were also obtained from 

INEGI. All possible base locations are shown in Figure 5. 

 

 
Figure 5. Potential base locations in Tijuana 
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Demand call and priority: As for Monterrey, we use from an EMS provider the call history and the geographical 

location of the calls origin. In this case, a total of 10,176 calls that requested EMS provided by the Red Cross of 

Tijuana were collected from January 1 to August 31, 2014. These records contain the GPS location of the originator 

of the call, as well as the same priority levels of each call. The location of all EMS calls used in our demand model 

is shown in Figure 6. 

 

 
Figure 6. Location of calls during the period of study in Tijuana 

 

Demand scenarios and average time travel were constructed in the same way as for Monterrey. 

 

4 Numerical Experimentation and Results 
In this section we describe the experimentation settings, the performance measures used to compare the three models 

under study, and finally the results obtained from the numerical experimentation.  

 

4.1 Experimentation settings 
The three models were implemented in GAMS 23.5 and solved with CPLEX in a standard laptop (i.e. Intel® Core™ 

i7-4600M CPU @ 2.90 GHz 2.90 GHz with 8GB RAM). They were run for the both cases: Tijuana and Monterrey. 

After solving each model, the additional variables needed to evaluate the other two models were computed either in 

GAMS or post-processed in Matlab. The same values were used in the three models for the following parameters: 

𝑟1= 15 minutes, 𝑟2 = 30 minutes, 𝛼 = 0.7, 𝜌 = 0.7.  𝑝 was set to 20 for Tijuana and 40 for Monterrey. The number 

of ambulances 𝐴 were varied one by one from 6 to 𝑝, since below 6 at least one model was infeasible in both cases. 

Though the models consider multi-period data and decisions, available demand data were split in three scenarios, 

depending the time of the day (i.e. am, pm, and night), and a fourth scenario was also considered, which includes the 

entire day. The scenarios were run independently, to be able to distinguish the behavior in each scenario. 

 

4.2 Performance indicators 
The indicators chosen to compare the three models are based on their objective functions; and are the most common 

criteria considered in the literature (van den Berg et al, 2016, Rodriguez et al, 2016, Hadiyul et al, 2018).  

Computation times turned out to be irrelevant to the discussion because their values were small and very similar (i.e. 

just a few seconds), especially considering that these models are used for strategic decisions.    

 

The comparison criteria used are grouped in coverage related and response time related indicators: 

 

Coverage related criteria: the first three criteria represent the % of locations covered once, twice, and three times 

within 𝑟1.  This criteria has into account an equity principle which is not affected by the demand weight. The fourth 

criterion corresponds to the objective function of the DSM, this is, the double weighted demand coverage. 
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Response time related criteria: we compared the maximum response time, the average response time which is the 

objective function of the ARTM, and the first location coverage in two time thresholds: 10 minutes and 30 minutes.  

 

 

4.3 Experimentation results and discussion 
Table 1 presents the results for the 8 performance indicators. They consist on the average of the runs varying the 

number of ambulances from 6 to 𝑝 for the four scenarios. 

 

Table 1. Average results of the three models for the two cases  

Criterion Description 
TIJUANA MONTERREY 

DSM ARTM MEXCLP DSM ARTM MEXCLP 

1 Single zone coverage 91.6% 80.4% 85.8% 86.3% 73.6% 66.5% 

2 Double zone coverage 87.1% 26.2% 69.3% 74.8% 38.8% 50.5% 

3 Triple zone coverage 12.0% 9.8% 52.9% 4.6% 8.5% 38.3% 

4 Double coverage 98.6% 46.0% 92.1% 88.4% 63.6% 81.8% 

5 Max. response time (min)  27.94  30.81  39.95   29.72  44.69  68.44  

6 Avg. response time (min) 11.84   5.74  14.24   11.60  8.33  17.45  

7 10 min threshold 30% 77% 18% 36% 56% 18% 

8 30 min threshold 100% 100% 96% 100% 96% 87% 

 

The first thing to note from table 1 is that, in general, the behavior patterns that will be discussed shortly apply for 

both cases.  Related with single coverage the DSM outperforms the other two models. As expected, this is also true 

in double zone coverage and double weighted demand coverage, with MEXCLP values closely behind them. The 

ARTM shows acceptable single coverage but very bad performance in backup coverage. However, in the Monterrey 

case, DSM behaves even worst for the triple zone coverage.  It also worth noting that when coverage that the three 

models behave better for weighted demand coverage than for zone coverage. 

 

For the average response time criteria, the ARTM performs much better than the other models, as it was expected 

since this is its objective function. The interesting thing is that the DSM shows very similar results on maximum RT 

and average RT for both cases, while the MEXCLP behaves worst for the largest city (i.e. Monterrey) with 

extremely high values of maximum RT.  

 

Regarding the last two criteria, when a threshold is set a low value (i.e. 10 minutes) the ARTM outperforms by far 

the other models and behaves very well for a loose threshold. Remember that the DSM guarantees the 100% 

coverage for thresholds greater or equal 𝑟2 = 30 minutes. The MEXCLP performs badly for low thresholds. 

 

By other hand, figures 7 and 8 shows the results of running the models for different values of 𝐴, so the behavior 

improvement as 𝐴 increases can be observed.The graphs show the coverage percentage in the principal y-axis and 

the average response time in the secondary y-axis of each model for each case, respectively.  This information 

allows decision makers to act in accordance to their own performance goals, and gives insights of the marginal 

contribution of having one more ambulance in operation. For example, Figure 7 shows that for Monterrey, perfect 

double coverage is achieved from 27 ambulances and that the average RT does not improve from 24 while the 

expected coverage increases. In addition, the expected RT steadily decreases in about a half minute for each 

additional ambulance from the 12
th

. 

 

Figure 8 shows for the Tijuana case that the best double coverage is attained with 9 ambulances but only after 15 

ambulances the RT stabilizes at its best value. The expected coverage is also constantly increasing when increasing 

the number of ambulances for single and both backup coverage. 

 

Finally, it must be mentioned that the different scenarios showed similar behaviors in terms of marginal 

improvements as the number of ambulances increase, so no more discussion is presented here. 
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(a)  DSM 

 
(b) ARTM 

 
(c) MEXCLP 

Figure 7. Coverage versus response time for different number of ambulances: Monterrey case 
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(a) DSM (b) ARTM 

 
(c) MEXCLP 

Figure 8. Coverage versus response time for different number of ambulances: Tijuana case 

 

5 Conclusions 
Similar performance behavior of the three models compared in this study, the DSM, the ARTM, and the MEXCLP, 

were observed for the two Mexican cases studied: Monterrey and Tijuana. These cities are different in size, demand 

behavior and density.  It was observed that when the DSM reaches its performance limits (i.e. 100% or almost), the 

increase of ambulances does not contribute to an improvement in RT. However, this is not true the other way 

around, since the RT is always susceptible to improvement. For the ARTM, an increase in the number of 

ambulances contributes steadily to improvements in both the objective function and the coverage. 

 

It should be addressed a multi-objective approach with objective functions that promote at the same time to 

maximize coverage and minimize response times; since each model pulls the solution towards its objective function 

but does not necessarily promote an improvement in the other criteria. The MEXCLP is the model that shows a 

constant improvement with the increase of ambulances in both types of criteria (coverage and RT), but the RTs 

obtained are well above the optimal ones, which is not good. It is suggested to complement the ARTM, in a way that 

involves the backup coverage. On the other hand, the MEXCLP has a great potential for improvement if it is 

considered dynamically, so that the probability parameter that an ambulance is occupied 𝑝𝑟 is observed and taken as 

a changing value according to the time interval and the actual number of ambulances in operation. 
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