PERFORMANCE ANALYSIS AND MODIFICATION OF A SLAUGHTERHOUSE WASTE BIOGAS PLANT FOR BIOGAS AND ELECTRICITY GENERATION

Moses Jeremiah Barasa Kabeyi
22064693@dut4life.ac.za
Industrial Engineering Department, Durban University of Technology, Durban South Africa

Oludolapo Akanni Olanrewaju
oludolapoo@dut.ac.za
Industrial Engineering Department, Durban University of Technology, Durban South Africa

ABSTRACT

In this study, the performance of an operating biogas plant using slaughterhouse waste was carried with the view of improving its operation and hence protect the environment from pollution coming from slaughterhouse waste. This research was conducted through site visits, observations, oral interviews, and document reviews. It was established that the existing biogas plant was not performing as expected. The study showed that the biogas plant performance is about 72.9% of the optimum production and uses only 5% of the available waste thus 95% is not processed leading to environmental pollution and waste of potential energy resource. It was observed that the substrate to water mixing ratio used 1:2.5, temperature in the digester averaged 34°C, average pH of the substrate was 6.5 and the pressure was 400mm of water. These parameters were regarded as outside the optimum production range. Modification on the plant was therefore proposed based on the analysis done. The proposed new biogas plant design is expected to increase slaughterhouse waste utilization, increase biogas production, and reduce environmental pollution. The new biogas plant design has a 1600m³ digester with an expected output of 1920m³ and slaughterhouse waste utilization of will increase to 92.86%.

Key Words: Slaughterhouse; Slaughterhouse waste; biogas production, biogas from slaughterhouse waste.

Authors Biographies

Moses Jeremiah Barasa Kabeyi is currently pursuing his D.Eng. In Industrial Engineering in the Department of Industrial Engineering at Durban University of Technology. He earned his B.Eng. degree in Production Engineering and MSC in Mechanical and Production Engineering (Energy) from Moi University, in Kenya, MA in Project planning and Management from University of Nairobi, in Kenya and Diplomas in Project management, Business management and NGO management respectively from The Kenya Institute of Management. He has worked in various factories including sugar manufacturing at Nzoia Sugar Company Ltd, pulp and paper at Pan African Paper Mills EA Ltd, and power generation at the Kenya Electricity Generating Company (KenGen) in Kenya, in an industrial career of 16 years before moving into teaching. He has taught in various universities in Kenya including University of Nairobi, Technical University of Mombasa, and Egerton University and currently on study leave. His research interests are power generation, fuels and combustion, internal combustion engines and project management and sustainability. He is registered with the Engineers Board of Kenya (EBK) and Institution of Engineers of Kenya (IEK) and has published several journal papers.

Oludolapo Akanni Olanrewaju is currently a Senior Lecturer and Head of Department of Industrial Engineering, Durban University of Technology, South Africa. He earned his BSc in Electrical Electronics Engineering and MSc in Industrial Engineering from the University of Ibadan, Nigeria and his Doctorate in Industrial Engineering from the
Tshwane University of Technology, South Africa. He has published journal and conference papers. His research interests are not limited to energy/greenhouse gas analysis/management, life cycle assessment, application of artificial intelligence techniques and 3D Modelling. He is an associate member of the Southern African Institute of Industrial Engineering (SAIIIE) and NRF rated researcher in South Africa.