Investigating the Features of Indonesia Stock Price During Covid-19 pandemic: An Application of Merton Jump Diffusion Model

Dhea Putri Adriani, Ratna Herdiana and Widowati
Faculty of Science and Mathematics
Universitas Diponegoro
Tembalang, Semarang, Jawa Tengah 50275, Indonesia
dheeadriani@student.undip.ac.id, ratnaherdiana@lecturer.undip.ac.id, widowati@lecturer.undip.ac.id

Teuku Afrizal
Faculty of Social Science and Political Science
Universitas Diponegoro
Tembalang, Semarang, Jawa Tengah 50275, Indonesia
teukurian@lecturer.undip.ac.id

Jumadil Saputra
Faculty of Business, Economics and Social Development
Universiti Malaysia Terengganu
21030 Kuala Nerus, Terengganu, Malaysia
jumadil.saputra@umt.edu.my

Abstract

The Covid-19 pandemic has had a major impact on global financial problem increasingly erratic stock price movement, including in Indonesia. In general terms, stock prices have some features that describe price movements. These features are jump, volatility smile, and leptokurtic. These features are obtained by modelling the stock price with the best model. This paper investigates the Merton Jump Diffusion (MJD) model and implemented stock prices in Indonesia to see if the model could capture some stock price features during the Covid-19 pandemic. MJD model is built based on the Black Scholes model by adding a Poisson Jump Process with the parameters are instantaneous expected return, volatility, jump intensity, mean, and standard deviation. The parameter values estimated by using the Maximum Likelihood Estimation algorithm and computed using MATLAB. The Indonesian stock price being modelled is 10 Blue Chips stocks during the Covid-19 pandemic period 23/12/2019 –23/12/2020. The result shows that Blue Chips Stocks in Indonesia exhibit several jumps by jump intensities values. Moment density of MJD reveals the presence of leptokurtic feature by excessive kurtosis and indicated volatility smile by skewness. It is found that the MJD model is suitable for modelling Indonesia's stock prices during the Covid-19 pandemic

Keywords
Merton Jump Diffusion, Indonesia Stock Price, Jump, Leptokurtic, Maximum Likelihood Estimation

1. Introduction

The Covid-19 Pandemic, an epidemic since early 2020, has a major impact on global financial problems, including in Indonesia. It has resulted in increasingly erratic stock price movements. This condition causes many investors to sell off their investment by selling share ownership which has an impact on the value of share prices and investment growth. Investors gave up their investment due to diminishing consumer interest during the Covid-19 Pandemic. Dwindling consumer interest also counts on the number of layoffs or scattering during times of the pandemic. This is
what causes the value of shares to experience erratic movements beyond normal conditions, even with fatal consequences, that is make Indonesia Composite Index (ICI or IDX Indonesia) value drop far from the price value under normal conditions. Several empirical studies show that stock price movements' dynamics have a stochastic volatility pattern and fatter tails than the standard normal (Musnadi et al., 2020; Sinurat et al., 2020; Novat et al., 2019). The stochastic volatility pattern is a volatility curve that has implied to resemble a ‘smile’ or called a volatility smile and a fat tail (Sukono et al., 2019). The normal standard is a curve with a higher peak than the normal distribution due to excess kurtosis, called leptokurtic kurtosis (Sukono et al., 2019; Kou, 2002). The dynamics of stock price obtained are the price features captured by a model. Black Scholes is a basic model used to capture asset price dynamics (Yi, 2010). Black Scholes model assumed that the price of an asset follows a geometric Brownian motion. Still, the Black Scholes model cannot properly capture stock price features such as fat tail (leptokurtic) and abnormality called volatility smile (Burger and Kliaras, 2013).

Several models have been developed and proposed to capture the features of stock prices and have been applied to several world stock markets (Lin et al., 2018). The Merton Jump Diffusion Model (MJD) applied to the East African stock market (Novat et al., 2019). Merton’s approach to stock prices adds a simple parameter of the compound Poisson jump process to the Black Scholes model to provide excess skewness and kurtosis of the price density (Matsuda, 2004). The Merton model is also applied to the Standard & Poor's (S&P) 500 Index and compared to the Black Scholes model, where Merton's approach can provide clearer features than the Black Scholes (Gugole, 2016). Apart from the Merton model, several other models applied to the world stock market, such as Kou Model which is applied to the Japanese stock market (Maekawa et al., 2018). The ARJI-EGARCH Model which is applied to the Egyptian, Nigerian, and South African stock markets (Kuttu, 2017), Mellin's transformation of the American S&P 500 stock index (Frontczak, 2013) and the GARCH model for modelling the return volatility on the Uganda Securities Exchange (Namugaya et al., 2014). Therefore, this paper’s main objective is to apply the Merton Jump Diffusion model to the 10 stock market prices included in Indonesia’s Blue Chips to investigate whether the model can capture stock features based on the stock's daily closing price during the Covid-19 pandemic.

2. Methodology

2.1. Merton Jump Diffusion Model

Merton Jump Diffusion (MJD) model is a model that can capture skew and excess kurtosis asset price which is built on the Black Scholes model with adding three parameters of compound Poisson Process, namely \(\lambda \), \(\mu \), and \(\delta \). The Poisson process is the basic process of Levy jump process (Lawler, 2014), so that the MJD model is in the form of an exponential Levy model as follows:

\[
s_t = S_0 e^{\lambda t}
\]

where the stock price process \(S_t \) is modelled as an exponential Levy process \(L_t \) with a time interval \(0 \leq t \leq T \). The Levy process chosen is a Brownian motion with drift (continuous diffusion process) and additional a compound Poisson process (continuous jump process) such that:

\[
L_t = (\alpha - \frac{\sigma^2}{2} - \lambda k) t + \sigma B_t + \sum_{i=1}^{N_t} Y_i
\]

where \(B_t \) is a standard brownian process, \((\alpha - \frac{\sigma^2}{2} - \lambda k) t + \sigma B_t \) is a Brownian motion with drift process and \(\sum_{i=1}^{N_t} Y_i \) is a compound Poisson jump process. Thus, the log-return of MJD Model is given in Levy process as:

\[
\ln \left(\frac{S_t}{S_0} \right) = L_t = (\alpha - \frac{\sigma^2}{2} - \lambda k) t + \sigma B_t + \sum_{i=1}^{N_t} Y_i
\]

2.2. Model Derivation

Assumed that asset price jumps occur independently and identically and the probability during a time interval \(dt \) can be written using a Poisson process \(dN \), as (Merton, 1976):

\[
Pr \{ \text{an asset price jump once in } dt \} = Pr \{ dN(t) = 1 \} \equiv \lambda dt
\]

\[
Pr \{ \text{an asset price jumps more than once in } dt \} = Pr \{ dN(t) \geq 2 \} \equiv 0
\]

\[
Pr \{ \text{an asset price does not jump in } dt \} \equiv 1 - \lambda dt
\]

where \(\lambda \) is the intensity of the process of the jump or the number of jumps per unit of time.
Suppose in interval dt the asset price jumps from S_t to $y_t S_t$, with y_t is absolute price jump size, then the relative price jump size where the percentage change in the asset price occurs due to jump is written as:

$$\frac{dS_t}{S_t} = \frac{y_t S_t - S_t}{S_t} = y_t - 1$$ \hspace{1cm} (4)

where Merton assumes that y_t is nonnegative random variables drawn from a lognormal distribution, i.e. $\ln(y_t) \sim i.i.d. N(\mu, \delta^2)$. It in turn implies that:

$$E[y_t] = e^{\mu + \frac{1}{2} \delta^2}$$ and $$E[(y_t - E[y_t])^2] = e^{\mu + 2\delta^2}(e^{\delta^2} - 1)$$

It because if $\ln x \sim N(a, b)$, then $x \sim \text{Lognormal}(e^{\frac{1}{2}b^2}, e^{a+b^2}(e^{b^2} - 1))$.

Incorporates the above properties to takes the SDE of MJD dynamics in the form:

$$\frac{dS_t}{S_t} = (\alpha - \lambda k)dt + \sigma dB_t + (y_t - 1)dN_t$$ \hspace{1cm} (5)

where, B_t is a standard Brownian motion process, N_t is a Poisson process with intensity λ, α is the instantaneous expected return on the asset, and σ is the instantaneous volatility of the asset return conditional on that jump does not occur.

Supposed that $(B_t), (N_t)$ and (y_t) independent. The relative price jump size of S_t, $y_t - 1$ is lognormally distributed with the mean

$$E[y_t - 1] = e^{\mu + \frac{1}{2} \delta^2} - 1 = k$$ \hspace{1cm} (6)

and variance

$$E[(y_t - 1) - E[y_t - 1])^2] = e^{2\mu + \delta^2}(e^{\delta^2} - 1)$$ \hspace{1cm} (7)

MJD model assumes that the log price jump size $\ln(y_t) = Y_t$ is a normal random variable such that:

$$\ln \left(\frac{y_t S(t)}{S(t)} \right) = Y_t \sim \text{i.i.d.} N(\mu, \delta^2)$$ \hspace{1cm} (8)

2.3. Solution Model for MJD

Considered equation (5) and multiply S_t on both sides, then

$$dS_t = (\alpha - \lambda k)dt + \sigma dB_t + (y_t - 1)S_t dN_t$$ \hspace{1cm} (9)

From Ito's formula for Jump Diffusion (Cont and Tankov, 2004):

$$df(X_t, t) = \frac{\partial f(X_t, t)}{\partial t} dt + b_t \frac{\partial f(X_t, t)}{\partial x} dx + \sigma_t^2 \frac{\partial^2 f(X_t, t)}{\partial x^2} dt$$

$$+ \sigma_t \frac{\partial f(X_t, t)}{\partial x} dN_t + [f(X_{t+}, \Delta Y_t) - f(X_t)]$$ \hspace{1cm} (10)

where b_t corresponds to the drift term and σ_t corresponds to the volatility term of a jump-diffusion process $X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s + \sum_{i=1}^{N_t} \Delta X_t$ and $f \in C^{1,2}([0, T] \times \mathbb{R})$

Let $f(S_t, t) = \ln(S_t)$

$$\frac{\partial f}{\partial t} = 0$$ \hspace{1cm} (11)

$$\frac{\partial f}{\partial S} = 1$$ \hspace{1cm} (12)

$$\frac{\partial^2 f}{\partial S^2} = -\frac{1}{S_t^2}$$ \hspace{1cm} (13)

From equation (9):
Substituting the result in equation (11) to (16) into equation (10), then

\[
d \ln S_t = \frac{\partial \ln S_t}{\partial t} dt + (\alpha - \lambda k)S_t \frac{\partial \ln S_t}{\partial S_t} dt + \frac{\sigma^2 S_t^2}{2} \frac{\partial^2 \ln S_t}{\partial S_t^2} dt + \sigma S_t \frac{\partial \ln S_t}{\partial S_t} dB_t + \left[\ln y_t S_t - \ln S_0 \right]
\]

\[
d \ln S_t = (\alpha - \lambda k)S_t \frac{1}{S_t} dt - \frac{\sigma^2 S_t^2}{2} dt + \sigma S_t dB_t + \ln y_t
\]

\[
d \ln S_t \equiv \left(\alpha - \lambda k - \frac{\sigma^2}{2} \right) dt + \sigma dB_t + \ln y_t
\]

Integrating equation (17) with the time interval \(0 \leq s \leq t\), then we get

\[
\int_0^t d \ln S_s = \int_0^t \left(\alpha - \lambda k - \frac{\sigma^2}{2} \right) ds + \int_0^t \sigma dB_s + \sum_{i=1}^{N(t)} \ln y_i
\]

\[
\ln S_t \bigg|_0 = \left(\alpha - \lambda k - \frac{\sigma^2}{2} \right) t + \sigma B_t \bigg|_0 + \sum_{i=1}^{N(t)} \ln y_i
\]

\[
\ln S_t - \ln S_0 = (\alpha - \frac{\sigma^2}{2} - \lambda k)(t - 0) + \sigma (B_t - B_0) + \sum_{i=1}^{N(t)} \ln y_i
\]

\[
\ln S_t = \ln S_0 + (\alpha - \frac{\sigma^2}{2} - \lambda k)t + \sigma B_t + \sum_{i=1}^{N(t)} \ln y_i
\]

\[
\exp(\ln S_t) = \exp \left\{ \ln S_0 + (\alpha - \frac{\sigma^2}{2} - \lambda k)t + \sigma B_t + \sum_{i=1}^{N(t)} \ln y_i \right\}
\]

\[
S_t = S_0 \exp \left\{ \left(\alpha - \frac{\sigma^2}{2} - \lambda k \right)t + \sigma B_t \right\} \exp \left\{ \sum_{i=1}^{N(t)} \ln y_i \right\}
\]

or

\[
S_t = S_0 \exp \left\{ \left(\alpha - \frac{\sigma^2}{2} - \lambda k \right)t + \sigma B_t + \sum_{i=1}^{N(t)} \ln y_i \right\}
\]

Using the definition of the log-return jump size \(\ln(y_i) \equiv Y_i\), then:

\[
S_t = S_0 \exp \left\{ \left(\alpha - \frac{\sigma^2}{2} - \lambda k \right)t + \sigma B_t + \sum_{i=1}^{N(t)} Y_i \right\}
\]

Such that we get the solution of the log-return \(\ln \left(\frac{S_t}{S_0} \right)\) which is modeled as the following Levy process:

\[
\ln \left(\frac{S_t}{S_0} \right) = L_t = \left(\alpha - \frac{\sigma^2}{2} - \lambda k \right)t + \sigma B_t + \sum_{i=1}^{N(t)} Y_i
\]
Note that the compound Poisson jump process \(\prod_{i=1}^{N_t} y_i = 1 \) or \(\sum_{i=1}^{N_t} \ln y_i = \sum_{i=1}^{N_t} Y_i = 0 \), if \(N_t = 0 \) (no jumps between time 0 and \(t \)) then positive and negative jumps cancel each other.

The probability density of log return \(x_i = \ln \left(\frac{S_t}{S_0} \right) \) for MJD model is:

\[
P(x_i \in A) = \sum_{i=0}^{\infty} P(N_i = i)P(x_i \in A | N_i = i)
\]

\[
P(x_i = \frac{e^{-\mu t} (\lambda t)^i}{i!} N(x_i;(\alpha - \frac{\sigma^2}{2} - \lambda k)t + i\mu, \sigma^2, \lambda t + i\delta^2)}
\]

2.4. Moment of MJD Model
The moment of the merton jump diffusion model is obtained using the Fourier transform method, which produces the annual mean, variance, skewness, and excess kurtosis of the log-return density as follows (Tang, 2018):

\[
E[x_i] = (\alpha - \frac{\sigma^2}{2})dt + \mu \lambda dt
\]

\[
Variance[x_i] = \sigma^2 dt + (\delta^2 + \mu^2)\lambda dt
\]

\[
Skewness[x_i] = \frac{(3\delta^2 + \mu^2)\mu \lambda dt}{(\sigma^2 dt + (\delta^2 + \mu^2)\lambda dt)^{\frac{3}{2}}}
\]

\[
Excess Kurtosis[x_i] = \frac{(3\delta^4 + 6\mu^2\delta^2 + 3\mu^4)\lambda dt + (3\lambda^2 (\delta^2 + \mu^2)^2 + 6\lambda \sigma^2 (\delta^2 + \mu^2) + 3\sigma^4)dt^2}{(\sigma^2 dt + (\delta^2 + \mu^2)\lambda dt)^{\frac{5}{2}}}
\]

2.5. Maximum Likelihood Estimation for MJD Model
The initial parameters for MJD model are \(\mu, \sigma, \lambda, \delta, \) dan \(\alpha \). These initial parameters used to estimate the numerical optimization of the likelihood of Merton Jump Diffusion. Considered a definition of the probability density function and the MJD model equation, the probability density function of the MJD model is given as follows:

\[
P(x_i) = \sum_{i=0}^{\infty} \frac{e^{-\mu t} (\lambda t)^i}{i!} N(x_i;(\alpha - \frac{\sigma^2}{2} - \lambda k)t + i\mu, \sigma^2, \lambda t + i\delta^2}
\]

The objective function of the MLE method to maximize the likelihood function is

\[
L(\theta; x) = \prod_{i=1}^{n} P(x_i)
\]

where \(P(x_i) \) is the probability density function of the MJD model and \(x = (x_1, ..., x_n) \) is the log-return of empirical data (Tang, 2018).

3. Result and Discussion
3.1. Data
The data used in this study came from the official website of Yahoo Finance. The data used are daily stock price closing data from 10 Indonesian Blue Chips stocks, namely BBCA, BBRI, ASII, JSMR, PGAS, UNVR, TLKM, PTBA, GGRM, and INDF, during the Covid-19 pandemic from 23/12/2019 to 23/12/2020. Thus, for each stock there are 244 daily stock price closing data.

3.2. Parameter Estimation of Merton Jump Diffusion Model
The probability density function of the MJD model in equation (21) used to estimate the model parameters using the Maximum Likelihood Estimation method with the objective function in equation (26). Numerical simulation for model estimation calculated using MATLAB. The estimation results of the variables in each stock market, as shown in Table 1.
Table 1 shows that the jump intensity (λ) in Perusahaan Gas Negara (PGAS) shares is very high, which is around 649 jumps compared to other stocks' jump intensity. It shows that PGAS tends to be more sensitive to the factors that affect stock prices during the Covid-19 pandemic. Meanwhile, PTBA shares have the lowest jump intensity value among other stocks, around 18 jumps. So that PTBA shares are the stocks least affected by stock factors during the Covid-19 pandemic. Based on all the results of the intensity value, no stock has a zero jump value. It indicates that the stock price varies randomly.

For the expected return value obtained based on the α parameter, only ASII, PGAS and INDF stocks experienced an increase in return because they were positive. Meanwhile, other stocks experience a decline in return with a value that tends to be negative. It shows that during the Covid-19 Pandemic, Indonesian stocks tended to experience a decline in their rate of return. However, not all stocks experienced a decline in return. The three stocks had a positive value of the instantaneous expected return to maintain returns during the Covid-19 pandemic crisis.

![ASII daily stock closing price level](image1.png) ![ASII log return](image2.png)

Figure 1. ASII daily stock closing price level and log-return (Dec, 2019 to Dec, 2020)

Figure 1a shows that ASII experience price fluctuations, where the stock price has increased and decreased in price randomly. And experienced a very drastic decline in price from the stock's initial price for some time and then increased until the end time. Figure 1b shows the comparison of the MJD log-return model results with the empirical log return on ASII stocks. The empirical log return is obtained by estimating the probability density function using kernel density estimation to reference the stock log-returns reality results for the MJD model. Figure 1b shows many high jumps and occurs randomly. Likewise, empirical shows several jumps with values that are not far from the MJD model. The difference between the two approaches lies in the one higher jump captured by the MJD model towards negative values, whereas empirical tends to be positive. Many jumps generated by log-returns support the jump intensity parameter (λ) estimation results in table 1, which shows ASII has a high jump of about 195 jumps. The number of jumps that occurs causes asset prices to jump randomly. Hence, the result of the jump size is also randomly. Since MJD can detect the same number of log-return jumps as the empirical results, MJD matches ASII stocks for log-return values and captures any jumps.
Figure 2. PGAS daily stock closing price level and log-return (Dec 2019 to Dec 2020)

Figure 2a shows that PGAS experienced a very drastic decline in price from the shares' initial price and continued to fall for some time. It slowly began to increase again even though they had dropped again until finally, they continued to increase until the end. Figure 2b shows that the MJD model shows very high and very frequent jumps. Likewise, empirically shows a jump with a value that is not far from the MJD model. The number of jumps and the jumps' density that occurs from the log return supports the estimation results of the jump intensity parameter (λ) in table 1 which shows that PGAS has the largest jumps from other stocks, which is around 649 jumps. The number of jumps that occurs causes asset prices to jump randomly so that the resulting jump size is also random. Because MJD can detect the same number of log-return jumps as the empirical results, MJD matches the PGAS stock for the log-return value and captures any jumps.

Figure 3. INDF daily stock closing price level and log-return (Dec 2019 to Dec 2020)

Figure 3a shows that INDF experience very tight fluctuations; after experiencing a price increase, the stock price has decreased again. When the share price has decreased in price very far from the initial price, the stock does not decrease significantly because it still has time to experience a price increase, although it falls back and then rises again. However, the share price has decreased again. Figure 3b shows that the MJD model has several jumps that occur randomly. Likewise, empirically shows a jump with a value that is not far from the MJD model. But the MJD model manages to capture the one highest jump towards positive values, whereas the empirical does not. A number that occurs from log-returns supports the estimation of the jump intensity parameter (λ) in table 1 which shows that INDF has a high jump, which is about 179 jumps. The number of jumps that occurs causes asset prices to jump randomly,
so the resulting jump's size is also random. Because MJD can detect the same number of log-return jumps as the empirical results, MJD is suitable for INDF stock for log-return values and captures any jumps.

From figures 1, 2 and 3 show Covid-19 pandemic which began to spread since early 2020, to be precise in March 2020, made stock prices plummet and experienced a very drastic decline. It illustrates that Indonesia is experiencing a financial crisis when the Covid-19 pandemic is slowly spreading. Meanwhile, stock returns continue to experience high jumps in both positive and negative values. However, these three stocks are stocks that have positive returns among other stocks.

3.3. Moment Density of Log-Return MJD Model

Considered moment density of log-return MJD Model equation (22) to (25), we get mean, variance, skewness, and excess kurtosis of the log-return density as follows:

Table 2. Moment Density of MJD Model for Indonesian Blue Chips Stocks

<table>
<thead>
<tr>
<th>Stock</th>
<th>Mean</th>
<th>Variance</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBCA</td>
<td>0.00003</td>
<td>0.00053</td>
<td>0.23527</td>
<td>7.2673</td>
</tr>
<tr>
<td>BBRI</td>
<td>-0.00027</td>
<td>0.00108</td>
<td>0.15017</td>
<td>5.6878</td>
</tr>
<tr>
<td>ASII</td>
<td>-0.00057</td>
<td>0.00094</td>
<td>-0.22865</td>
<td>4.9095</td>
</tr>
<tr>
<td>JSMR</td>
<td>-0.00054</td>
<td>0.00119</td>
<td>0.00394</td>
<td>5.1887</td>
</tr>
<tr>
<td>PGAS</td>
<td>-0.00112</td>
<td>0.00155</td>
<td>-0.07685</td>
<td>4.5517</td>
</tr>
<tr>
<td>UNVR</td>
<td>-0.00047</td>
<td>0.00054</td>
<td>0.30721</td>
<td>8.9271</td>
</tr>
<tr>
<td>TLKM</td>
<td>-0.00078</td>
<td>0.00069</td>
<td>0.62167</td>
<td>6.3934</td>
</tr>
<tr>
<td>PTBA</td>
<td>0.00031</td>
<td>0.00237</td>
<td>0.92588</td>
<td>28.8511</td>
</tr>
<tr>
<td>GGRM</td>
<td>-0.00109</td>
<td>0.00087</td>
<td>-0.02621</td>
<td>7.972</td>
</tr>
<tr>
<td>INDF</td>
<td>-0.00064</td>
<td>0.00072</td>
<td>-0.1253</td>
<td>6.9451</td>
</tr>
</tbody>
</table>

Table 2 shows that all stocks have kurtosis more than 3, which means that all stocks have excess kurtosis and indicate that they have leptokurtic features (fatter tail and taller than normal curve). All the value of kurtosis, PTBA shares have the largest kurtosis, namely 28. This leptokurtic shows that Indonesian stocks are in a condition where the potential return is large, but with a very high risk. In addition to leptokurtic features, skewness values (where the resulting skewness values are negative and positive skewness) indicate that stock prices have non-symmetric returns and suggest that stocks have an empirical abnormality called volatility smile.

Figure 4 shows the leptokurtic curve generated by the MJD model for PTBA stocks. The green line is a leptokurtic curve based on the probability density function's empirical results using kernel density estimation, which produces the moment value; mean = 0.00031, variance = 0.00237, skewness = 1.191, and kurtosis = 29.4064. The results obtained by the MJD model in table 2 indicate that the moment value is close to the empirical result, with excess kurtosis of...
28.85. It shows that PTBA stocks have kurtosis higher than the normal standard (red line), i.e. kurtosis > 3. Thus, it indicates that PTBA has a leptokurtic return distribution.

4. Conclusion
In conclusion, the Indonesian Blue Chips stocks have several jump prices, which jump parameters results and the log-return. The probability density function shows that the stock has leptokurtic characteristics as evidenced by a kurtosis value that exceeds 3. It shows the abnormalities of stocks, namely the volatility smile feature as evidenced by positive and negative skewness values indicating stock returns are non-symmetrical. Therefore, the MJD model fits into Indonesia's Blue Chips share price data because it can detect stock features during the financial crisis caused by the Covid-19 Pandemic.

References

© IEOM Society International
Biographies

Dhea Putri Adriani is a master's student at the Mathematics Department, Faculty of Science and Mathematics, Universitas Diponegoro, Semarang. Her research interest is in financial mathematics, applied mathematics and artificial intelligence.

Ratna Herdiana is a senior lecturer at the Department of Mathematics, Faculty of Science and Mathematics, Universitas Diponegoro Semarang, Central Java, Indonesia. She holds a PhD degree in mathematics from the University of Queensland. She has taught in several universities including University of Indonesia, Universiti Teknologi Petronas and Hail University-KSA. Her research interests include numerical methods, optimization, and applied mathematics.

Widowati is a Professor at the Department of Mathematics, Faculty of Science and Mathematics, Universitas Diponegoro Semarang, Central Java, Indonesia. Her research interests include mathematical modelling, optimization, control system and applied mathematics. She has published more than 45 reputable International Journals/ reputable International Proceedings/ International Journals and 6 ISBN books. In addition, the research results also have been obtained more than 20 patents/ intellectual property rights.

Teuku Afrizal is a senior lecturer in the Department of Public Administration, Universitas Diponegoro, Indonesia, and a researcher at the university's SDGs Center. He is an expert on Development Studies, especially on environmental sociology and anthropology, anthropology of development, community development studies, social theory, and demography. He gained research experience in several projects funded by Ford Foundation, Toyota Foundation, UNDP, Scalabrini Migration Center, IKMAS, UKM, National Grant (Malaysia Government), BorIIS, UMS, Sabah Forestry Department, Jhon Hopkins University, Boston University, Sultan Mizan Royal Foundation (YDSM) and Malay Strategy Foundation. He has published several articles in international refereed journals, chapter in books and book. He is a member of the Malaysia Social Science Association.

Jumadil Saputra is a PhD holder and works as a senior lecturer in the Department of Economics, Faculty of Business, Economics and Social Development, Universiti Malaysia Terengganu, Malaysia. He has published 125 articles Scopus/ WoS indexed. As a lecturer, he has invited as a speaker in numerous universities, the examiner (internal and external), the reviewer for article journal and proceeding, the conference committee, journal editorial board, and others. He is a professional member of the International Business Information Management Association (IBIMA), Ocean Expert: A Directory of Marine and Freshwater Professional, and Academy for Global Business Advancement (AGBA). His research areas are Quantitative Economics (Microeconomics, Macroeconomics, and Economic Development), Econometrics (Theory, Analysis, and Applied), Islamic Banking and Finance, Risk and Insurance, Takaful, i.e., financial economics (Islamic), mathematics and modelling of finance (Actuarial). His full profile can be accessed from https://jumadilsaputra.wordpress.com/home-2/.